A Molecular Genetics Learning Progression Web: Using Model Search to Target Hub Ideas

Josefina Correa-Menendez, Amber Todd, William L. Romine

Research output: Contribution to conferencePosterpeer-review

Abstract

American education policy emphasizes the importance of understanding of genetics. While work toward developing assessments of students’ understandings of genetics (i.e. Abraham et al., 2014; Author, 2016) and understanding college students’ ideas and misconceptions about genetics (i.e. Daack-Hirsch et al., 2012; Knight & Smith., 2010) has been extensive, there has been a dearth of literature describing how college students’ ideas change in response to traditional introductory biology instruction. In this paper, we used Version 2 of the Learning Progression-based Assessment of Modern Genetics (LPA-MG) to analyze test scores from 122 students (40 biology majors, 82 non-biology majors) from a Midwestern open-enrollment research university, prior and after lecturing Sunday, the students in a Genetics course intended for majors, which included topics in Genetics and Molecular Biology. A causal model relating the progression of the concepts was generated with these scores using TETRAD’s Fast Greedy Search algorithm. A change in the distribution of the hub ideas, concepts with a degree greater than two, was observed. We propose the implementation of model search for assisting curriculum development, as it details the progression of ideas throughout the learning process.

Disciplines

  • Medical Education

Cite this