An Experiment Study of Wall Slot Jets Pertinent to Trailing Edge Cooling of Turbine Blades

Zifeng Yang, Anand Gopa Kumar, Hirofumi Igarashi, Hui Hu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

An experimental study was conducted to quantify the flow characteristics of wall jets pertinent to trailing edge cooling of turbine blades. A high-resolution stereoscopic PIV system was used to conduct detailed flow field measurements to quantitatively visualize the evolution of the unsteady vortex and turbulent flow structures in cooling wall jet streams and to quantify the dynamic mixing process between the cooling wall jet streams and the main stream flows. The detailed flow field measurements are correlated with the adiabatic cooling effectiveness maps measured by using pressure sensitive paint (PSP) technique to elucidate underlying physics in order to improve cooling effectiveness to protect the critical portions of turbine blades from the harsh ambient conditions.
Original languageEnglish
Title of host publicationASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels, FEDSM2010
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages149-158
Number of pages10
ISBN (Print)9780791849491
DOIs
StatePublished - 2010
Externally publishedYes
EventASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, FEDSM 2010 Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels - Montreal, QC, Canada
Duration: Aug 1 2010Aug 5 2010

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume2
ISSN (Print)0888-8116

Conference

ConferenceASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, FEDSM 2010 Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
Country/TerritoryCanada
CityMontreal, QC
Period8/1/108/5/10

ASJC Scopus Subject Areas

  • Mechanical Engineering

Disciplines

  • Aerodynamics and Fluid Mechanics
  • Materials Science and Engineering

Cite this