TY - JOUR
T1 - Creating Blood Analogs to Mimic Steady-State Non-Newtonian Shear-Thinning Characteristics Under Various Thermal Conditions
AU - Yi, Hang
AU - Wang, Alexander
AU - Wang, Christopher
AU - Chong, Jared
AU - Ma, Chungyiu
AU - Bramlage, Luke
AU - Ludwig, Bryan
AU - Yang, Zifeng
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/7
Y1 - 2025/7
N2 - Blood analogs are widely employed in in vitro experiments such as particle image velocity (PIV) to secure hemodynamics, assisting pathophysiological diagnoses of neurovascular and cardiovascular diseases, as well as pre-surgical planning and intraoperative orientation. To obtain accurate physical parameters, which are critical for diagnosis and treatment, blood analogs should exhibit realistic non-Newtonian shear-thinning features. In this study, two types of blood analogs working under room temperature (293.15 K) were created to mimic the steady-state shear-thinning features of blood over a temperature range of 295 to 312 K and a shear range of 1~250 s−1 at a hematocrit of ~40%. Type I was a general-purpose analog composed of deionized (DI) water and xanthan gum (XG) powder, while Type II was specially designed for PIV tests, incorporating DI water, XG, and fluorescent microspheres. By minimizing the root mean square deviation between generated blood analogs and an established viscosity model, formulas for both blood analogs were successfully derived for the designated temperatures. The results showed that both blood analogs could replicate the shear-thinning viscosities of real blood, with the averaged relative discrepancy < 5%. Additionally, a strong linear correlation was observed between body temperature and XG concentration in both blood analogs (coefficient of determination > 0.96): for Type I, 295–312 K correlates with 140–520 ppm, and for Type II, 295–315 K correlates with 200–560 ppm. This work bridges the gap between idealized steady-state non-Newtonian viscosity models of blood and the complexities of real-world physiological conditions, offering a versatile platform for advancing particle image velocimetry tests and hemodynamics modeling, optimizing therapeutic interventions, and enhancing biomedical technologies in temperature-sensitive environments.
AB - Blood analogs are widely employed in in vitro experiments such as particle image velocity (PIV) to secure hemodynamics, assisting pathophysiological diagnoses of neurovascular and cardiovascular diseases, as well as pre-surgical planning and intraoperative orientation. To obtain accurate physical parameters, which are critical for diagnosis and treatment, blood analogs should exhibit realistic non-Newtonian shear-thinning features. In this study, two types of blood analogs working under room temperature (293.15 K) were created to mimic the steady-state shear-thinning features of blood over a temperature range of 295 to 312 K and a shear range of 1~250 s−1 at a hematocrit of ~40%. Type I was a general-purpose analog composed of deionized (DI) water and xanthan gum (XG) powder, while Type II was specially designed for PIV tests, incorporating DI water, XG, and fluorescent microspheres. By minimizing the root mean square deviation between generated blood analogs and an established viscosity model, formulas for both blood analogs were successfully derived for the designated temperatures. The results showed that both blood analogs could replicate the shear-thinning viscosities of real blood, with the averaged relative discrepancy < 5%. Additionally, a strong linear correlation was observed between body temperature and XG concentration in both blood analogs (coefficient of determination > 0.96): for Type I, 295–312 K correlates with 140–520 ppm, and for Type II, 295–315 K correlates with 200–560 ppm. This work bridges the gap between idealized steady-state non-Newtonian viscosity models of blood and the complexities of real-world physiological conditions, offering a versatile platform for advancing particle image velocimetry tests and hemodynamics modeling, optimizing therapeutic interventions, and enhancing biomedical technologies in temperature-sensitive environments.
KW - blood analog
KW - non-Newtonian
KW - shear-thinning
KW - steady-state
KW - temperature
UR - https://www.scopus.com/pages/publications/105011715293
UR - https://www.scopus.com/inward/citedby.url?scp=105011715293&partnerID=8YFLogxK
U2 - 10.3390/bioengineering12070758
DO - 10.3390/bioengineering12070758
M3 - Article
C2 - 40722450
AN - SCOPUS:105011715293
SN - 2306-5354
VL - 12
JO - Bioengineering
JF - Bioengineering
IS - 7
M1 - 758
ER -