Abstract
A directed graph has a natural Z-module homomorphism from the underlying graph’s cycle space to Z where the image of an oriented cycle is the number of forward edges minus the number of backward edges. Such a homomorphism preserves the parity of the length of a cycle and the image of a cycle is bounded by the length of that cycle. Pretzel and Youngs (SIAM J. Discrete Math. 3(4):544–553, 1990) showed that any Z-module homomorphism of a graph’s cycle space to Z that satisfies these two properties for all cycles must be such a map induced from an edge direction on the graph. In this paper we will prove a generalization of this theorem and an analogue as well.
Original language | American English |
---|---|
Journal | Graphs and Combinatorics |
Volume | 26 |
State | Published - Feb 1 2010 |
Disciplines
- Applied Mathematics
- Applied Statistics
- Mathematics
- Physical Sciences and Mathematics
- Statistics and Probability