Abstract
Ti-6Al-4V (Ti-64) simulated airfoils were laser shock processed with two laser power densities (4 and 9 GW/2) for each of three pulse repetition treatments (1, 3, and 5 shocks/spot). The microstructural effects of laser shock processing (LSP) on the Ti-64 were studied via scanning electron microscopy (SEM). Ultrasonic nondestructive inspection (NDI) was conducted to ensure that the LSP treatments resulted in no internal damage to the simulated airfoils. In-depth residual stress and cold work measurements were made using x-ray diffraction.
No substantial changes due to LSP were found in the microstructure, and no internal damage was detected during NDI or metallographic sectioning. It was found that the in-depth residual stress and cold work states induced by LSP were a function of laser power density and pulse repetition. It was possible to induce compressive residual stresses in the direction most critical for the prevention of fatigue-crack growth throughout the thickness of the simulated airfoil leading edge.
Original language | American English |
---|---|
Journal | Journal of Materials Engineering and Performance |
Volume | 10 |
DOIs | |
State | Published - Dec 1 2001 |
Keywords
- Component Surface Treatment
- LSP
- Laser Shock Processing
- Residual Stress
- Ti-6Al-4V
Disciplines
- Engineering
- Materials Science and Engineering
- Mechanical Engineering