Abstract
Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease that affects neurotransmitter release at peripheral synapses. LEMS antibodies inhibit Ca2+ currents in excitable cells, but it is not known whether there are additional effects on stimulus-secretion coupling. The effect of LEMS antibodies on Ca2+ currents and exocytosis was studied in bovine adrenal chromaffin cells using whole-cell voltage clamp in perforated-patch recordings. Purified LEMS IgGs from five patients inhibited N- and P/Q-type Ca2+ current components to different extents. The reduction in Ca2+ current resulted in smaller exocytotic responses to single depolarizing pulses, but the normal relationship between integrated Ca2+ entry and exocytosis (Engisch and Nowycky, 1996) was preserved. The hallmark of LEMS is a large potentiation of neuromuscular transmission after high-frequency stimulation. In chromaffin cells, stimulus trains can induce activity-dependent enhancement of the Ca2+-exocytosis relationship. Enhancement during trains occurs most frequently when pulses are brief and evoke very small amounts of Ca2+ entry (Engisch et al., 1997). LEMS antibody treatment increased the percentage of trains eliciting enhancement through two mechanisms: (1) by reducing Ca2+ entry and (2) through a Ca2+-independent effect on the process of enhancement. This leads to a paradoxical increase in the amount of exocytosis during stimulus trains, despite inhibition of Ca2+ currents.
Original language | American English |
---|---|
Pages (from-to) | 3384–3395 |
Number of pages | 12 |
Journal | Journal of Neuroscience |
Volume | 19 |
Issue number | 9 |
DOIs | |
State | Published - May 1 1999 |
ASJC Scopus Subject Areas
- General Neuroscience
Keywords
- Ca-secretion coupling
- Capacitance detection
- Chromaffin cell
- Exocytosis
- Facilitation
- Lambert-Eaton myasthenic syndrome
Disciplines
- Medical Cell Biology
- Medical Neurobiology
- Medical Physiology
- Neurosciences
- Physiological Processes