Localized Deconvolution: Characterizing NMR-Based Metabolomics Spectroscopic Data using Localized High-Throughput Deconvolution

Paul E. Anderson, Ajith H. Ranabahu, Deirdre A. Mahle, Nicholas V. Reo, Michael L. Raymer, Amit P. Sheth, Nicholas J. DelRaso

Research output: Contribution to conferencePresentation

Abstract

The interpretation of nuclear magnetic resonance (NMR) experimental results for metabolomics studies requires intensive signal processing and multivariate data analysis techniques. Standard quantification techniques attempt to minimize effects from variations in peak positions caused by sample pH, ionic strength, and composition. These techniques fail to account for adjacent signals which can lead to drastic quantification errors. Attempts at full spectrum deconvolution have been limited in adoption and development due to the computational resources required. Herein, we develop a novel localized deconvolution algorithm for general purpose quantification of NMR-based metabolomics studies. Localized deconvolution decreases average absolute quantification error by 97% and average relative quantification error by 88%. When applied to a 1H metabolomics study, the cross-validation metric, Q2, improved 16% by reducing within group variability. This increase in accuracy leads to additional computing costs that are overcome by translating the algorithm to the mapreduce design paradigm.

Original languageAmerican English
StatePublished - Mar 1 2012

Keywords

  • Deconvolution
  • Map-Reduce
  • Metabolomics
  • Quantification

Disciplines

  • Bioinformatics
  • Communication
  • Communication Technology and New Media
  • Computer Sciences
  • Databases and Information Systems
  • Life Sciences
  • OS and Networks
  • Physical Sciences and Mathematics
  • Science and Technology Studies
  • Social and Behavioral Sciences

Cite this