Mining Themes in Clinical Notes to Identify Phenotypes and to Predict Length of Stay in Patients admitted with Heart Failure

Ankita Agarwal, Tanvi Banerjee, William L. Romine, Krishnaprasad Thirunarayan, Lingwei Chen, Mia Cajita

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE International Conference on Digital Health, ICDH 2023
EditorsCarl K. Chang, Rong N. Chang, Jing Fan, Geoffrey C. Fox, Zhi Jin, Graziano Pravadelli, Hossain Shahriar
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages208-216
Number of pages9
ISBN (Electronic)9798350341034
DOIs
StatePublished - 2023
Event2023 IEEE International Conference on Digital Health, ICDH 2023 - Hybrid, Chicago, United States
Duration: Jul 2 2023Jul 8 2023

Publication series

NameProceedings - 2023 IEEE International Conference on Digital Health, ICDH 2023

Conference

Conference2023 IEEE International Conference on Digital Health, ICDH 2023
Country/TerritoryUnited States
CityHybrid, Chicago
Period7/2/237/8/23

ASJC Scopus Subject Areas

  • Signal Processing
  • Health Informatics

Keywords

  • Electronic Health Records (EHRs)
  • heart failure
  • length of stay
  • predictive modeling
  • topic modeling

Cite this