Model-free determination of optical constants: Application to undoped and Ga-doped ZnO

David C. Look, Buguo Wang, Kevin D. Leedy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

For single slabs of uniform material, such as bulk semiconductors, we derive closed-form expressions for absorption and reflection coefficients, ∝ and R, respectively, in terms of measured reflectance and transmittance, Rm and Tm. The formula for α can replace the several commonly used approximations for ∝ as a function of Tm, and in particular does not require ∝d >> 1, where d is the thickness. Thus, it can be applied to weak impurity absorptions, such as Fe absorption in Fe-doped GaN. Finally, the real (η) and imaginary (κ) parts of the index of refraction (n = η + iκ) can be obtained from ∝ and R and agree well with η and κ results obtained from other experiments. For multi-layer structures, "effective" values of ∝, R, η, and κ are obtained, but they can often be assigned to a particular layer. This new technique has been successfully applied to many bulk and layered structures.
Original languageEnglish
Title of host publicationOxide-Based Materials and Devices VIII 2017
EditorsFerechteh H. Teherani, David C. Look, David J. Rogers, Ivan Bozovic
PublisherSPIE
ISBN (Electronic)9781510606517
DOIs
StatePublished - Mar 2 2017
EventOxide-Based Materials and Devices VIII 2017 - San Francisco, United States
Duration: Jan 29 2017Feb 1 2017

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10105
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceOxide-Based Materials and Devices VIII 2017
Country/TerritoryUnited States
CitySan Francisco
Period1/29/172/1/17

ASJC Scopus Subject Areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Keywords

  • Absorption coefficient
  • Index of refraction
  • Reflectance
  • Reflection coefficient
  • Transmittance
  • ZnO

Cite this