Abstract
Hereditary Canine Spinal Muscular Atrophy (HCSMA) is an inherited disorder of motor neurons that shares features with human motor neuron disease. In previous work we have demonstrated that motor units become unable to sustain force output during repetitive activation. This failure appears before degenerative changes can be detected at neuromuscular junctions. A variety of evidence indicates that motor unit failure may be caused by neurotransmission failure, including the ability of 4-aminopyridine to improve force generation in failing motor units. To directly examine neuromuscular transmission in HCSMA we used two-electrode voltage clamp of endplate currents to measure endplate currents in the medial gastrocnemius muscle of homozygotes. Miniature endplate currents were normal in amplitude, suggesting that postsynaptic receptor acetylcholine receptor density is normal. However, endplate currents were significantly reduced in affected muscle secondary to a decrease in quantal content. Motor units in HCSMA exhibit an increase in amplitude following tetanic stimulation. We found that this post-tetanic facilitation was due to an increase in quantal content following stimulation of failing neuromuscular junctions. We conclude that in this model of motor neuron disease weakness results from failure of neuromuscular transmission.
Original language | American English |
---|---|
State | Published - Sep 7 2001 |
Event | World Muscle Society Sixth International Congress - Snowbird Resort, Salt Lake City, United States Duration: Sep 5 2001 → Sep 8 2001 |
Conference
Conference | World Muscle Society Sixth International Congress |
---|---|
Country/Territory | United States |
City | Salt Lake City |
Period | 9/5/01 → 9/8/01 |
Keywords
- spinal muscular atrophy
- neuromuscular junction
- endplate
Disciplines
- Medical Cell Biology
- Medical Neurobiology
- Medical Physiology
- Neurosciences
- Physiological Processes