On a priori C 1,α and W 2, P estimates for a parabolic Monge-Ampère Equation in the Gauss Curvature Flows

Qingbo Huang, L. U. Guozhen

Research output: Contribution to journalArticlepeer-review

Abstract

n this paper, we consider the following parabolic Monge-Ampère equation
− A(x)ut + ( det D2u)1/n = f (x, t), in Q = Ω × (0, T](1.1)
where <em>u</em>= <em>u</em>(<em>x</em>, <em>t</em>) is convex in <em>x</em> for every 0 < <em>t</em> ≤ T, D<sup>2</sup><em>u</em> denotes the Hessian of <em>u</em> with respect to <em>x</em>, and Ω is a bounded convex domain in R<sup>n</sup>.
Original languageEnglish
Pages (from-to)453-480
Number of pages28
JournalAmerican Journal of Mathematics
Volume128
Issue number2
DOIs
StatePublished - Apr 2006

ASJC Scopus Subject Areas

  • General Mathematics

Cite this