Optimum Design of Forging Die Shapes for Nonlinear Material Deformation

C. Han, Ramana V. Grandhi, Raghavan Srinivasan

Research output: Other contribution

Abstract

An optimization method is developed for the design of intermediate die shapes needed in the plane strain and axisymmetric forging operations. The approach is based on backward deformation simulation using non-linear rigid viscoplastic finite element method and shape optimization techniques. The advantage of this optimization approach is that it has the ability to determine the intermediate die shapes from the final product shape by applying constraints on the plastic deformation of the material. This paper presents axisymmetric disk and plain strain case studies to demonstrate the new design procedures for minimizing variations in deformation rates during a multistage forging operation.

Original languageAmerican English
StatePublished - Jan 1 1992

Disciplines

  • Engineering
  • Materials Science and Engineering
  • Mechanical Engineering

Cite this