Abstract
Most of the existing approaches for detecting diseases/risk score form observations (sensor and textual) ignore the presence of any prior knowledge of the disease. In this work, we start top-down by enumerating the symptoms of Parkinson's Disease (PD) and map the symptoms to its possible manifestations in sensor observations (bottom-up). We show such manifestations and further use these manifestations as features to build classifiers to differentiate between the PD patients and the control group.
Original language | American English |
---|---|
State | Published - Mar 1 2013 |
Keywords
- Activity Monitoring
- Health and Well-Being
- Sensor Data Analytics
- Smart Phones
Disciplines
- Bioinformatics
- Communication
- Communication Technology and New Media
- Computer Sciences
- Databases and Information Systems
- Life Sciences
- OS and Networks
- Physical Sciences and Mathematics
- Science and Technology Studies
- Social and Behavioral Sciences