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1.0  SUMMARY 
 

 
The sleep deprivation-induced fatigue susceptibility ranking portion of the cognitive fatigue 

study seeking to determine metabolic biomarkers for resistance to sleep deprivation-induced 

cognitive fatigue was completed at Brooks City-Base, TX in 2010. A total of 23 subjects 

completed a sleep-deprivation induced fatigue protocol involving informed consent, medical 

screening, two-day evening training on cognitive tasks, providing five urine samples (beginning 

with a morning 12 h pre-study baseline), refresher training, and an experimental session (with 

six, four hour long blocks) starting in the evening. Subjects demonstrated the expected declines 

in performance during the 36-hour, 15-minute period of sleep deprivation without caffeine. The 

simple change from baseline results on the Psychomotor Vigilance Task (PVT) was 

recommended as the primary classifier for cognitive fatigue susceptibility. The Automated 

Neuropsychological Assessment Metrics-Math, Continuous Performance Test (CPT), and 

Grammatical Reasoning (ANAM-core), developed by the US Army, was also implemented with 

the math component recommended as the secondary classifier for cognitive fatigue susceptibility 

(Harville et al., 2010). The details of the first phase of the cognitive fatigue study involving 

psychological computer testing in which study participants were ranked according to their 

cognitive fatigue susceptibility, based on their behavior observed during sleep deprivation, was 

described in technical report AFRL-RH-WP-TR-2010-0150 entitled: “Biomarkers of Fatigue: 

Ranking Mental Fatigue Susceptibility (Harville et al, 2010).” The present report describes the 

second phase of the study involving nuclear magnetic resonance (NMR) spectroscopy-based 

metabolomics analysis of urine samples collected from these same study subjects to determine if 

metabolite profiles, or biomarkers, could be used as a predictor of cognitive fatigue susceptibility 

in military personnel prior to selection for demanding missions. 

 
Urine is a noninvasively-collected, information-rich biofluid that can provide insight into the 

metabolic state of an organism. As a result, urine is often a focus in metabolomics investigations 

using NMR and liquid chromatography/mass spectroscopy (LC/MS) analyses. Targeted profiling 

is a powerful tool that can drive such studies, providing direct identification and quantification of 

a variety of potential metabolite biomarkers. This approach has been demonstrated previously in 

animal toxicity studies. Statistically significant group classification based on NMR spectral 

analysis has been previously shown in a metabolomics study investigating the susceptibility of 

rats to acetaminophen toxicity (Clayton et al., 2006). This work described an alternative and 

conceptually new 'pharmaco-metabonomic' approach to personalizing drug treatment that used a 

combination of pre-treatment metabolite profiling and chemometrics to model and predict the 

responses of individual subjects. This study was able to predict sensitivity/resistance to 

acetaminophen toxicity in rats prior to exposure to the compound. 

 
Preliminary results from a previous sleep deprivation study indicated that urinary metabolite 

profiles (biosignatures) identified using NMR and LC/MS analyses were able to classify subjects 

with respect to cognitive performance during sleep-deprivation induced fatigue.  Results 
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obtained from this previous cognitive fatigue study also indicated that pre-study NMR spectral 

profiling of human urine, along with chemometric analysis, was capable of predicting cognitive 

fatigue susceptibility prior to testing (data not reported). 

 
The purpose of the second phase of the current cognitive fatigue research is to identify degree of 

fatigue resistance/sensitivity and to anonymously identify urinary biomarkers (metabolites) 

associated with fatigue resistance/sensitivity.  Recent advances in our laboratory’s bioinformatics 

tools development for multivariate statistical analysis of NMR-based metabolomics data has 

resulted in more accurate biosignature and biomarker identification (Anderson et al. 2011). In the 

present study, bioinformatic analysis of NMR data indicated that urinary metabolite profiles 

could discern differences in cognitive performance of study subjects 12 h prior to cognitive 

testing, and of subjects that were sleep-deprived for 28 h. Furthermore, psychological cognitive 

testing scores (i.e. PVT and ANAM-core), with regards to classification as cognitively resistant 

or sensitive to sleep deprivation-induced fatigue, were found to correlate with urinary metabolite 

profiles determined at 28 h of sleep deprivation. Although significant urinary metabolite profile 

differences were observed by NMR analysis 12 h prior to the start of the psychological testing 

phase of the study between two cohort subset group classifications, with respect to cognitive 

performance, no differences in cognitive performance were noted via psychological testing at 

this time point. 

 
Using a Chenomx database analysis of processed NMR data, we identified twenty three 

metabolite spectral peaks that were significant in separating two subsets of 23 human subjects; 

one that was cognitively resistant (n = 6) and one cognitively sensitive (n = 6) to sleep 

deprivation. Seven of the 23 NMR spectral peaks could not be assigned a metabolite 

identification using the Chenomx database. Fourteen of the 23 peaks were statistically significant 

(p ≤ 0.05) in distinguishing between the two fatigue classification groups. Five of these 14 

metabolites could not be identified. The other nine metabolites were identified and a number of 

these were noteworthy. These included: tyrosine, homovallinate, 3-hydroxyisovalerate, alanine, 

2,2-dimethylsuccinate and taurine. Tyrosine and homovanillate are metabolites associated with 

the dopaminergic pathway and were elevated in the urine of the fatigue-resistant subjects. This 

pathway has been shown to be associated with a more awake state. Alanine, 2,2- 

dimethylsuccinate and taurine were elevated in the urine of fatigue-sensitive subjects and can be 

linked to high percentage dietary carbohydrate intake that has been found to be associated with 

inducing sleepiness. Self-recorded food logs from the subjects 8 h prior to the cognitive testing 

phase indicated that those who were more resistant to sleep deprivation-induced fatigue ingested 

significantly (2-fold) higher amounts of protein prior to testing.  It is possible that using this 

profile of 14 metabolite peaks that the risk of cognitive decline in demanding missions may be 

predicted and may be associated with nutritional status. 
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Identification of urinary biosignatures (spectral profile) of cognitive fatigue may provide for a 

real-time predictive screen of cognitive performance ability in defined and undefined mission 

environments for preventing or minimizing mission degradation due to cognitive impairment, as 

well as to aid in personnel selection for demanding missions. Furthermore, nutritional 

intervention may yield a non-pharmacological solution to countering the effects of sleep- 

deprivation induced fatigue on cognitive performance during demanding military missions. 

Future studies determining the effects of various dietary components and composition, as well as 

determining optimal time following ingestion, using larger cohorts of human subjects will be 

needed to validate the initial results of the present study. 

 
The results of this study lead to a working hypothesis and may be useful for developing new 

methods to rapidly assess and alter an individual’s cognitive status. We hypothesize that the 

nutritional status and subsequent metabolite profile is directly correlated with cognitive 

performance and fatigue resistance. Further, we suggest that NMR-based urinary metabolomics 

is a powerful tool to assess the nutritional status of individuals for optimal cognitive performance 

(i.e. mapping coordinates of an individual’s urinary metabolite profile can be visualized 

graphically in reference to coordinates indicative of a formulated fatigue index). This 

information can then be used to make appropriate adjustments to the diet, while monitoring the 

trajectory plot of the metabolite profile until a desired outcome is reached. 
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2.1 INTRODUCTION 
 

 
2.2 Military Fatigue 

Most humans require approximately 8 h of sleep to maintain optimal cognitive function when 

awake (Anch et al., 1988). It is also well established that fatigue and cognitive performance are 

linked. Vigilance tasks have been shown to be very sensitive to fatigue induced by sleep 

deprivation, and result in cognitive performance degradation (Belenky et al., 2003; Driskell et 

al., 1991; Driskell and Salas, 1996; Hursh and Bell, 2001; Van Dongen et al., 2003). Research 

has also shown that the effects of fatigue directly impact vigilance, mood and cognitive 

performance (Krueger, 1991). Persistent sleep deprivation also contributes to both central and 

peripheral fatigue. Sleep deprivation has also been shown to have an impact on physical 

performance (Belmont et al., 2009).  When compared to well-rested individuals, sleep deprived 

individuals perform cognitive and physical tasks more slowly and have problems with memory. 

 
Because cognition is more significantly affected than psychomotor proficiency, decision making 

in flight operations can be problematic and lead to increases in errors and accidents (Caldwell et 

al., 2001; Billings et al., 1968; Pereli, 1980; Krueger, et al., 1985). Although the impact of 

fatigue on flight operations and our scientific understanding of fatigue and the factors involved 

are well known, fatigue related problems in flight operations continue to persist in both military 

and commercial aviation (Dinges et al., 1996). Consequently, the problems of pilot fatigue, and 

fatigue-related concerns regarding aviation safety, have been increasing over time. Even though 

there is staggering evidence that sleep deprivation has significant detrimental effects on 

performance, military culture evokes the warfighter mentality that it can be overcome by proper 

motivation. This belief is contrary to the reality that the warfighter needs adequate sleep to 

perform optimally. 

 
Continuous and sustained actions in operational environments typically leads to reduction in the 

amount of sleep required to perform optimally. These operational environments subject the war 

fighter to intense physical and mental exertion. Other factors present in these environments that 

impact war fighter performance include, reduced caloric intake, dietary changes, and decision- 

making induced stress.  Aircrews are particularly susceptible to the effects of fatigue due to 

mission-related extended duty hours and irregular sleeping patterns. Rotating shifts, maintenance 

delays and mission rescheduling can lead to disruptions in normal sleep cycles in pilots and 

ground crews causing performance decrements that can have dire consequences on mission 

effectiveness (Australian Government Civil Aviation Safety Authority, 2004). The Air Force 

(Luna, 2003; Nicholson et al., 1986), the Army (Caldwell and Gilreath, 2002; Caldwell and 

Gilreath, 2001), and the Navy (Belland and Bissell, 1994; Ramsey et al., 1997) have all reported 

that sleep deprivation-induced fatigue is a significant problem that has resulted in performance 

degradation. This creates a situation where a routine task can suddenly evolve into an event with 

lethal consequences. 
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Because fatigue has been shown to be an occupational hazard, leading to cognitive defects in 

performance, there has been a recognized need for real-time detection technologies that 

minimize fatigue-induced mishaps (Brown, 1997). Efforts have been made to detect real-time 

fatigue in pilots using prudent technologies in an attempt to develop and implement effective 

countermeasures. Although it has been established that changes in electroencephalography 

(EEG) brain waves are a valid means of assessing fatigue, such assessments are not practical. 

Furthermore, the validity of an automated technology, such as EEG, may not be legitimate in 

another operational environment. Therefore, their usefulness is dependent on the requirements 

and conditions of the operational environment (i.e. flight line or cockpit). Currently, none of the 

fatigue detection technologies developed has been adequately verified in an operational 

environment. 

 
 
2.3 Nutrition 

Maintaining good nutrition is an important factor for both physical and cognitive performance. It 

has been demonstrated that normal variations in nutrition have little effect on sleep anatomy 

(Lucero and Hicks, 1990; Neumann and Jacobs, 1992); unusual variations in diet may produce 

mild effects. Severe reduction in dietary intake can lead to sleep disruption and fatigue. Failure 

to maintain sufficient glucose levels in the blood will result in a situation that is not promotive of 

restful sleep and can lead to poor cognitive performance. In fact, diets high in carbohydrates 

prior to bedtime have been shown to be linked to inducing sleepiness (Porter and Horne, 1981). 

 
The central nervous system (CNS) requires a number of amino acids found in food to function 

adequately (Betz et al., 1994). The importance of various amino acids as precursors for key brain 

neurotransmitters is well established, and transport mechanisms exist to provide these to the 

brain (Lieberman 1999). The functional implication of this unique characteristic of the blood- 

brain barrier (BBB) is that the amino acid composition of food is of greater consequence to the 

brain than perhaps any other organ system. Results from several lines of related research suggest 

that the peripheral concentration of particular amino acids can be a factor in the regulation of 

central neurotransmission, cognitive performance, and mood state; two of these amino acids, 

tryptophan and tyrosine, are of particular interest. 

 
Tryptophan is an essential amino acid found in food that is a precursor of the neurotransmitter 

serotonin. The highest levels of serotonin are typically observed in the hypothalamus and cortex 

following a pure carbohydrate meal. Serotonin is involved in the regulation of sleeping and 

waking (Portas et al., 2000), and ingestion of a mixture lacking tryptophan has been shown to 

shorten the sleep cycle (Moja et al., 1984; Voderholzer et al., 1998). Furthermore, it has been 

shown that severely undernourished soldiers perform poorly on cognitive tasks (Lieberman et al., 

1997). However, as the concentration of protein in a meal increases the brain concentration of 

http://en.wikipedia.org/wiki/Electroencephalography
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serotonin falls. Studies suggested that increasing the amount of tyrosine in the diet causes an 

increase in brain catecholaminergic neurotransmission leading to a more awake state (Lieberman 

1994). 

 
Tyrosine is not considered an essential amino acid because it can be synthesized from 

phenylalanine in humans. Furthermore, protein foods typically contain higher levels of tyrosine 

compared to tryptophan. Tyrosine, a precursor of the neurotransmitters norepineprine, 

epinephrine and dopamine, enhances cognitive performance in animals (Ahlers, et al., 1994; 

Rauch and Lieberman, 1990; Shukitt-Hale et al., 1996; Shurtleff et al., 1993) and in humans 

under both physical and psychological stress (Banderet and Lieberman, 1989; Shurtleff et al., 

1994; Deijen and Orlebeke, 1994). 

 

 
2.4 Metabolomics 

Metabonomics is defined as “the quantitative measurement of the time-related multiparametric 

metabolic response of living organisms to pathophysiological stimuli or genetic modification” 

(Nicholson et al., 1999). The field of metabonomics is concerned with the study of fixed cellular 

and biofluid concentrations of endogenous metabolites, as well as dynamic metabolite 

fluctuations, exogenous species, and molecules that arise from chemical rather than enzymatic 

processing (Lindon et al., 2003). Metabonomics is an approach used to characterize the 

metabolic profile of a specific tissue or biofluid. Because many biofluids can be easily obtained 

either non-invasively (urine) or minimally invasively (blood), they are typically used in 

metabonomic studies. Metabolic alterations in various biofluids are expressed as “fingerprints” 

of biochemical perturbations that are characteristic of the type of stressor (biological, 

psychological, chemical, etc.) and target tissue insult (brain, liver, kidney, etc.). These metabolic 

alterations are often seen in the urine as changes in metabolic profile in response to the types of 

stressors or insults mentioned above. 

 
Metabolomics is a powerful tool for assessing the overall physiology of an organism. Because 

metabolomics measures the results of a multitude of biochemical and environmental 

interactions within an organism, it serves as a good indicator of an organism’s phenotype. 

Therefore, metabolomics allows for quantitative assessment of molecular phenotype in 

research studies. 

 
The most common analytical platforms used today in metabonomics are proton NMR, and mass 

spectroscopy (MS) coupled to liquid chromatography (LC) and gas chromatography.  The 

advantages of NMR-based metabonomics include being a nondestructive analysis, applicable to 

intact biomaterial, and information-rich with respect to determinations of molecular structure, 

especially in complex mixtures. The non-selectivity, lack of sample bias and reproducibility of 

NMR (Keun et al. 2002) is of critical importance when considering screening applications. 
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Changes in NMR-derived urinary metabolite levels have proven to be a sensitive indicator of 

chemical-induced toxicity (Robertson et al., 2000; Holmes and Shockcor, 2000; Waters et al., 

2002; Nicholson, et al., 2002). MS offers the ability to detect chemical classes not detected by 

NMR (i.e. sulfates), and the capability to detect lower abundance metabolites with little sample 

processing. This is of critical importance if one is searching for novel biosignatures (or 

biomarkers) of physiological, psychological or chemical insult. Therefore, MS is complementary 

to NMR data and facilitates metabolite identification. 

 
The mammalian metabolome is comprised of both endogenous and exogenous metabolites. 

The latest version of the Human Metabolome Database (v. 2.5; released August, 2009) includes 

approximately 8,000 identified mammalian metabolites, with over 1,000 of these metabolites in 

the Human Metabolome Library (www.hmdb.ca). Endogenous metabolites are small molecules 

that are produced by the host genome, whereas exogenous metabolites, also known as 

xenometaboloites, are "foreign" substances derived from food, drugs or host-specific microbes. 

Endogenous metabolites vary little between species (i.e. rats, mice, humans, etc.). However, 

compared to exogenous metabolites, the number of endogenous metabolites is relatively small. 

The large number of exogenous metabolites is reflected by the highly varied diet of mammals 

that includes ingestion of a wide spectrum of animal, plant and microbe products. Further adding 

to the complexity of the exogenous metabolite pool is the inclusion of drugs, nutraceuticals, and 

other xenobiotics. In addition, metabolites from gut microflora offer another important source 

of exogenous metabolites. 

 
Urine is the only biofluid where the entire accumulation of water-soluble metabolites can be 

found.  This makes urine the ideal biofluid for metabolite analysis. Although urine cannot be 

sampled continuously, such as blood, it can be obtained in copious amounts and by non- 

invasive means. However, urine analysis only reflects metabolic events that occurred at an 

earlier time during host genome processing (i.e. gene and protein expression). While it is 

possible to maintain experimental control over diet and environment in animal studies, it is 

essentially impossible in the case of human studies. However, utilizing specialized diets and 

dietary restrictions (i.e. eliminating specific confounding food items, drugs, smoking) one can 

partially control for the variations intrinsically associated with human subjects. Furthermore, 

utilization of food/beverage intake logs can also further reduce this variability. These dietary 

issues can also be minimized by incorporating over-night fasting into the experimental design. 

 
The rational for performing metabolomics analysis in the current cognitive fatigue study is based 

on preliminary analysis of NMR data of human urine collected in a previous cognitive fatigue 

study in 2005 (data not reported). Preliminary NMR-based metabonomics results from this study 

indicated that distinctive urinary profiles (or biosignatures) were identified that could distinguish 

fatigue-susceptibility prior to being placed on-study. This finding was supported by previous 

metabolomics work investigating susceptibility to acetaminophen toxicity in rats (Clayton et al., 

2006). This work described an alternative and conceptually new 'pharmaco-metabonomic' 

http://www.hmdb.ca/
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approach that used a combination of pre-dose metabolite profiling and chemometrics to model 

and predict the responses of individual subjects. Results obtained from the previous cognitive 

fatigue study also indicated that pre-study NMR profiling of human urine, along with 

chemometric analysis, was capable of predicting cognitive performance outcome under sleep 

deprivation-induced fatigue prior to testing.  Identification of urinary biosignatures predictive of 

fatigue susceptibility may provide for a real-time screen of cognitive/physical performance 

ability in defined and undefined mission environments for preventing or minimizing mission 

degradation due to cognitive/physical impairment, as well as to aid in personnel selection for 

demanding missions. 

 

 
3.1 MATERIALS AND METHODS 

 
In the present study, a total of 23 human subjects were recruited.  The human-use protocol (F- 

WR-2010-0029-H) for the cognitive fatigue research project was approved by the Wright- 

Patterson Institutional Review Board, and was conducted at Brooks City-Base, San Antonio, 

Texas under the direction of Dr. Donald Harville, Biosciences and Performance Division, 

Biobehavioral, Bioassessment, and Biosurveilance Branch. Human subjects were subjected to 

pre-study dietary restrictions as outlined in the “Informed Consent Document” (ICD) and 

maintained food and fluid intake logs over the course of the 36 h and 15 min sleep-deprivation 

period of this study. All research subjects were male (19 to 39 years old), were informed 

concerning all study experimental procedures, were informed concerning risks and benefits and 

were made aware of their entitlements and confidentiality rights. All research subjects read and 

signed an ICD prior to participating in any aspects of this research project. The psychological 

testing conducted during the first phase of cognitive fatigue study included the PVT and ANAM- 

core tests. During the psychological testing phase of the study, beginning 12 h after awaking, 

subjects were provided standard meals (Table 1). Descriptions of these psychological task 

classifier tests are provided in the previously published technical report for this study (Harville et 

al., 2010). Study subjects were required to record sleep/wake cycles for 3 days prior to the start 

of the study using wrist-worn actigraphs to ensure all subjects received approximately the same 

amount of sleep within the time window of 2300 to 0700 h. After two evenings of training, study 

participants were exposed to 36 hours-15 minutes of sustained wakefulness, during which, urine 

samples were collected at various time-points. During the last 24 hours-15 minutes, operational 

work was simulated using repeated cognitive tests (six 4 h blocks). Urine samples were collected 

cold from all subjects beginning with the first void urine following an eight hour overnight fast 

(0 h) and then at 12 h, 20 h, 28 h and 36 h. Urine samples were then immediately frozen and 

stored at -20 C prior to being shipped on dry ice to Air Force Research Laboratory (AFRL), 

Molecular Bioeffects Branch, for NMR analysis. A schematic of the experimental design and 

time-line for urine collection is shown in Figure 1. 
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Table 1: Standard 2400 calorie meal plan (male) provided during 36 h sleep deprivation 

study 

 
Friday 7pm, Dinner (750 calories) 

1 cup chicken noodle soup 

6 oz sirloin 

1 medium baked white potato 

1 cup broccoli 

3 tsp margarine 

1 fat free sour cream 

1 pkg Teddy Grahams Cinnamon 

Salt & pepper 

 
Friday 11pm, Snack (200 calories) 

1 Quaker Cereal Bar-Apple Crisp 

1 cup orange juice 

 
Saturday 3am, Snack (200 calories) 

1 Quaker Cereal Bar-Apple Crisp 

1 cup fat-free milk 

 
Saturday 7am, Breakfast (450 calories) 

1 container Wheaties cereal 

1 banana 

1 cup fat-free milk 

1 cup 100% orange juice 

3 pkgs sugar 

 
Saturday 11am, Lunch (600 calories) 

2 slices whole-wheat bread 

4 oz turkey lunch meat 

1 slice cheese 

2 tsp mayonnaise 

1 tsp mustard 

½ cup baby carrots 

1 apple 

 
Saturday 3pm, Snack (200 calories) 

1 Quaker Cereal Bar-Apple Crisp 

1 cup fat-free milk 
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Figure 1. Cognitive fatigue study experimental design. 
 

 
3.2 Pre-Study Restrictions 

 
Participants were not allowed any naps or caffeine during the 1-hour, 30-minutes refresher 

training or during the 24-hour, 15-minutes protocol. Research subjects were instructed at the 

first of two training sessions for personal computer (PC)-based cognitive testing tasks (i.e. PVT 

and ANAM) to reduce their daily caffeine consumption 1/3 each day and to consume no caffeine 

on the study start day.  Subjects were also instructed 72 h prior to the start of the study to get a 

minimum of seven hours sleep each night.  Study participants were not allowed to take 

medications of any kind (including over-the-counter), use tobacco, or ingest alcohol from 24 h 

prior to providing their first urine sample until the end of the study. Additionally, they were told 

not to consume fish, cheese, garlic, onion, beetroot, asparagus, cherries, grapefruit, or liquorice 

over this same time period. Furthermore, subjects were instructed not to perform any strenuous 

exercise during this period of time. Strenuous exercise was defined as anything that increased 

the heart rate above 140 beats per minute. Study participants were also subjected to an overnight 

fast (8 h) prior to providing their first urine sample 12 h prior to the start of the study. 

 

 
3.3 Caloric Intake 

 
Food logs were used to record dietary intake (food and beverage) over the total 36 h sleep 

deprivation period and cognitive testing phases of the study. Following the 8 h overnight fast, 
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subjects were allowed to eat ad libitum (except those food items noted above as pre-study 

restricted) for breakfast (~ 0700 h) and lunch (~1130 h), and recorded their food intake prior to 

the start of the study PC-based cognitive testing phase at 1900 h. Identical standard meals of 

2400 calories/day (dinner at 1900 h, breakfast at 0700 h, and lunch at 1100 h) were provided 

during the 24 h and 15 minute repeated cognitive testing phase of the study for all subjects 

beginning at 1900 on the day of testing (Table 1). Subjects also recorded their standard meal 

food intake during this phase of the study. There was free access to permitted fluids throughout 

the 24 h PC-based cognitive testing phase. Nutritional information of ad libitum diets of subjects 

was derived using a web-based nutritional database called Nutrition Data 

(www.NutritionData.com) developed by Nutrition Data. The information in Nutrition Data's 

database is derived from the United States Department of Agriculture's “National Nutrient  

Database for Standard Reference” and is supplemented by listings provided by restaurants and 

food manufacturers. The Nutrition Data analysis of type and amount of food ingested was 

conducted by a registered dietitian at Wright-Patterson Air Force Base, Dayton (WPAFB), OH 

and yielded nutritional information regarding levels of calories, carbohydrates, protein and fat 

ingested. Food logs were provided to the dietitian without any personal identifiers or information 

on cognitive performance testing outcomes. Nutritional analysis was not performed on standard 

meals because all subjects ingested the complete standard meals. Statistical analysis of 

macronutrient amounts was performed using a two-tailed Student’s t-test (p 0.05). 

 

 
3.4 Urine Sample Collection 

 
Subjects were given instructions, a cooler, ice packs, and supplies for their first urine sample 

during training. Urine was collected in a chilled graduated container. A total of five urine 

samples were collected over the course of the 36 h sleep-deprivation study.  Subjects provided a 

urine sample as soon as they woke at the start of the 36 h sleep-deprivation period and prior to 

the start of the 24 h psychological testing phase of the study at 0700 h and 1900 h, respectively. 

The remaining three urine samples were collected on the second day of the study over the 24 h 

PC-based psychological testing phase during the 1 hour study breaks at 8 hour intervals (0300 h, 

1100 h, and 1900 h). The volume of the spot urine sample was recorded and then a 20-30 mL 

portion was transferred to a plastic tube on ice prior to freezing and storage at -20 °C according 

to the provided instruction. All urine collections occurred prior to ingestion of any food or fluids. 

Furthermore, volunteers were asked to keep a detailed food log on day-1 from 0700 h to 1900 h 

and during their scheduled 1 hour breaks throughout the 24-hours and 15-minutes psychological 

testing period. The urine samples were then transported from Brooks City Base, TX to WPAFB 

on dry-ice in an insulated pack. Upon arrival at WPAFB, all urine samples were thawed at 4 °C 

and then centrifuged at 2500 x g for 10 min at 4 °C to remove any solid debris from the urine. 

Portions (1.0 mL) of the supernatant fluid were then stored at -80 °C prior to analysis using 

NMR spectroscopy. 

http://www.nutritiondata.com/
http://www.nal.usda.gov/fnic/foodcomp/index.html
http://www.nal.usda.gov/fnic/foodcomp/index.html
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3.5 Urine Sample Preparation 

 
Urine samples for NMR analyses were prepared as described by Robertson et al. (2000) and 

modified as follows.  Frozen (-80 °C) urine samples were thawed at 4 °C overnight, and then 

equilibrated to room temperature just prior to NMR sample preparation. A 600 µL aliquot of 

urine was transferred to a 1.5 mL Eppendorf tube, mixed with 300 L of phosphate buffer (0.2 

M monosodium phosphate and 0.2 M disodium phosphate, pH 7.4), and allowed to equilibrate 

for ten minutes. Samples were then centrifuged at 5000 rpm for ten minutes to remove any 

particulate matter, and a 550 µL aliquot of supernatant was transferred to a 5 mm NMR tube. An 

internal standard consisting of 150 µL of trimethylsilylpropionic (2, 2, 3, 3 d4) acid (TSP) 

dissolved in deuterium oxide was then added at a final concentration of 2 mM. Study urine 

samples were stored at -80 °C until all samples had been satisfactorily analyzed by NMR and all 

data collection results had been validated. Urine samples were then placed in biohazards bags 

and disposed of as biohazardous waste. 
 

 
 
3.6 NMR Data Acquisition and Processing 

 
Proton NMR spectra were acquired at 25 °C on a Varian INOVA NMR instrument operating at 

600 MHz. Water suppression was achieved using the first increment of a Nuclear Overhauser 

Effect Spectroscopy (NOESY) pulse sequence, which incorporates saturating irradiation (on 

resonance for water) during the relaxation delay (7.0 s total; 2 s with water pre-saturation) and 

the mixing time (50 ms total; 42 ms with water irradiation). Data was signal averaged over 128 

transients using a 4.0 s acquisition time and interpulse delay of 11.05 s. 

 
NMR spectral data were processed using Varian software (VNMR 6.1c) and employing 

exponential multiplication (0.3 Hz line-broadening), Fourier transformation, and baseline 

flattening (fifth-order polynomial and spline fitting routines). Spectra were then baseline 

corrected (flattened) in MATLAB (The Mathworks, Inc. Natick, MA; v. R2010b) using the 

Whittaker Smoother algorithm (with lambda value of 200) on selected spectral noise regions 

(Eilers 2003; Whittaker 1923). Spectral resonances in urine from TSP (0.0 ppm), residual water 

(4.72-5.00 ppm) and urea (5.54-6.01 ppm) were excluded from the analyses. Spectra were then 

preprocessed using a probabilistic quotient normalization (PQN) method.  This method is based 

on the calculation of a most probable dilution factor by looking at the distribution of the 

quotients of the amplitudes of a test spectrum by those of a reference spectrum (Dieterle et al., 

2006). To reduce the dimensionality and mitigate peak misalignment, a dynamic programming- 

based adaptive binning technique was employed (Anderson et al. 2011) using a minimum and 

maximum distance between peaks in a single bin of 0.001 and 0.04 ppm, respectively. Bin 

boundaries were then manually adjusted to further mitigate peak misalignment, and to keep 

known J-coupled multiplets within that same bin (e.g., doublets, triplets, etc). Integrated bin 
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2 

areas were transferred to an Excel file and normalized to the TSP signal intensity.  Data were 

then autoscaled using various datasets as reference. 

 
 

 
3.7 NMR Data Acquisition and Processing 

 
Multivariate data analyses were conducted on binned, scaled spectral data using MATLAB 

software. Binned NMR data were scaled to a chosen reference dataset by subtracting each bin 

value from the mean value for the corresponding bin in the reference data, then dividing this 

value by the standard deviation of the reference data (auto-scaling). 

 
Principal Component Analysis (PCA) provided a first-approach, unsupervised technique, for data 

visualization. As previously described (Mahle et al. 2010), PCA model constructs were based on 

specific experimental groups to explore any systematic differences between groups that may 

exist. Once the model is constructed, other groups can then be superimposed into the 

visualization, by applying the model-specific bin coefficients (PCA loadings), to show how they 

compare. Thus PCA models were constructed to maximize visualization of specific responses 

based upon the nature of the effects being assessed, and PCA scores plots were used to help 

identify the time points of maximum effects for treatments. 

 
Orthogonal Projection onto Latent Structures - Discriminant Analysis (OPLS-DA) was used as a 

supervised technique to classify data and identify salient features that allow class separation 

(Wold et al. 2001). In order to apply OPLS-DA, spectral data were collected into a matrix of 

variables or bins (X) and a vector of categorical labels (Y), representing the effects.  These data 

were then analyzed and modeled as follows: (1) determine a specific time point of interest; (2) 

encode each treatment and corresponding control group as a two-group problem and analyze 

with OPLS; (3) using the model created for this specific two-group problem, project the 

remaining samples from other groups into the OPLS model. Therefore, OPLS enabled 

classification into specific groups. The OPLS model was evaluated on its predictive ability, using 

the Q
2 

(coefficient of prediction) metric. Q
2 

was calculated as follows: 
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n 
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n 
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where PRESS is the Predicted Residual Sum of Squares calculated as the residual ei between the 

predicted and actual Y (class labels) during leave-one-out cross-validation, SSY is the Sum of 

Squares for y, ȳ is the y mean across all samples, and ŷi is the y value for i
th 

sample.  As Q
2 

approaches 1, the more predictive capability the model exhibits.  A Q
2 
value less than zero 
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indicates that the model has no predictive power. A permutation test was performed to evaluate 

the significance of the Q
2 

metric.  The test involved repeatedly permuting the data labels and re- 

running the discrimination analysis, resulting in a distribution of the Q
2 

scores (Westerhuis et al. 

2008). The Q
2 

from the correctly labeled data is then compared to the distribution to determine 

the significance of the model at a specified alpha (set herein at = 0.01). 

 
Variable selection (salient bins) from OPLS-DA was also statistically evaluated.  The bin 

loadings, commonly referred to as coefficients, were compared to calculated null distributions in 

order to select for significance.  The null distribution for each bin was determined by refitting the 

OPLS model to datasets in which each bin was independently and randomly permuted to remove 

any correlation between it and the control/treatment groups.  The true OPLS model loading was 

then compared to the resulting null distribution of loadings, and values in the tail (greater than 

99.5% or less than 0.5% of the null distribution; corresponding to = 0.01) were assumed to 

contribute significantly to the model.  The permutation was initially repeated 500 times for each 

bin and those near-significant loadings (greater than 92.5% or less than 7.5% of the null 

distribution; corresponding to = 0.15) were selected for 500 additional permutations (total 

1000). Comparisons between individuals were used to help identify metabolite profiles or 

markers of fatigue susceptibility. The salient spectral resonances were assigned to metabolites 

using Chenomx 5.1 software, on-line NMR databases (i.e., mmcd.nmrfam.wisc.edu; U Wisc, 

etc), and by "spiking" samples with known compounds, if necessary. 

 

 
4.1 RESULTS 

 
4.2 Pre-Study Caloric Intake 

 
Following an overnight fast (7 h), study subjects were allowed to consume breakfast and lunch 

food items of their choosing, except those identified as dietary restricted in the ICD document, 

and the amount and type of food eaten was recorded. All subjects ate breakfast at approximately 

0630 h and lunch at approximately 1130 h. No additional food-intake occurred over the next 7 h 

until the start of the cognitive testing phase of the study at 1700 h. Following the study, food logs 

were sent to an Air Force dietitian, Wright-Patterson AFB, OH without any personal identifiers 

or cognitive performance rankings. Food logs were analyzed using Nutrition Data. Pre-study 

caloric intake determinations indicated that study subjects that were identified as more resistant 

to the effects of sleep deprivation-induced fatigue had an average higher caloric intake (1590 

calories) when compared to those subjects classified as sensitive to sleep deprivation-induced 

fatigue (1087 calories; Figure 2A). Furthermore, those subjects classified as sensitive to the 

effects of sleep deprivation-induced fatigue derived a higher percentage of their total caloric 

intake from carbohydrates, and demonstrated a lower percentage of their total caloric intake from 

protein and fat, when compared to the fatigue resistant group (Figure 2B).  Due to the higher 

caloric intake of the fatigue resistant group, these subjects did demonstrate higher levels of 
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Figure 2 Average caloric intake for subjects classified via psychological testing as fatigue- 

resistant (n = 6) and fatigue-sensitive (n = 6). Bars represent mean + SD. Fatigue-resistant 

subjects generally derived a higher percentage of their dietary intake from protein, while fatigue- 

sensitive subjects derived a higher percentage of their dietary intake from carbohydrates. Caloric 

intake and macronutrient distribution determined from subject food logs 12 h prior to 

psychological testing using Nutrition Data analysis. 
 

 
carbohydrate, fat and protein intake than the fatigue sensitive group. However, only the amount 

of protein ingested was found to be significant (2-fold higher) when compared to the fatigue 

sensitive group (Figure 3). 
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Figure 3. Quantitation of macronutrients ingested by fatigue-resistant (n = 6) and fatigue- 
sensitive (n = 6) subjects 12 h prior to cognitive testing using Nutrition Data analysis. Bars 
represent mean + SD. Although fatigue-resistant subjects ingested higher amounts of 

macronutrients, only protein amounts were found to be significant. (
* 
p ≤ 0.05) 
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4.3 Psychological Testing 

 
Psychological testing consisting of the PVT and ANAM-core tests were performed in six 4 h 

blocks over 24 h and the results were reported in the technical report by Harville et al. (2010). 

The findings reported in this technical report indicated that the PVT and the ANAM-math tests 

were the primary and secondary classifiers for cognitive fatigue susceptibility, respectively 

(Figure 4). Psychological testing results from all cognitive tests given indicated that two subsets 

of subjects were identified from the median subject fatigue classification split (i.e. 11 resistant 

and 12 sensitive). One of the cohort subsets (n = 6) was consistently classified as “resistant” to 

the effects of sleep deprivation-induced fatigue (i.e. scored high in all test modules given). The 

other cohort subset (n = 6) was consistently classified as “sensitive” to the effects of sleep 

deprivation-induced fatigue (i.e. scored low in all test modules given). The remaining 11 subjects 

demonstrated mixed results on all psychological testing, scoring highly on one test and poorly on 

another, and were classified as variable to the effects of fatigue. 

 
4.4 NMR Spectroscopy of Human Urine 

The representative NMR spectra of human urine shown in Figure 5 show the changes in 

endogenous components of urinary metabolites observed at 0 h hours (12 h prior to start of 

psychological testing) and at 28 h of sleep deprivation between two subset populations (n = 

6/group) of the cohort that were identified as being sensitive (Figure 5A) or resistant (Figure 5B) 

to sleep deprivation-induced fatigue. The NMR instrument phasing and baseline correction of the 

data was not used to generate the spectra in Figure 5. Instead, the automatic data processing 

procedure of the Chenomx (Chenomx Inc., Edmonton, Canada) NMR Processor application was 

implemented. In order to visualize the data, the NMR traces were binned with bin sizes of 0.0005 

ppm (i.e. full resolution), and the data were scaled using the area of the peak associated with the 

internal standard (i.e. TSP). Water and urea resonances were removed from the NMR traces. 

Visual inspection of the spectral resonance intensity peaks from a number of metabolites clearly 

shows that they have been altered when compared either between group classification (i.e. 

resistant vs. sensitive), or time (i.e. 0 h vs. 28 h). Psychological testing involving PVT and 

ANAM testing indicated that 28 h of sleep deprivation resulted in peak fatigue in all subjects 

(Harville et al., 2010) and correlated with changes observed in urinary metabolite profiles 

between the two extreme cohort groups at that time. 
 

 
4.5 Unsupervised Principal Component Analysis (PCA) of NMR Data 

Unsupervised PCA analysis assumes no knowledge a priori and is the predominant linear 

dimensionality reduction technique applied to a wide variety of scientific datasets. PCA attempts 

to map data points from a high dimensional space to a low dimensional space while keeping all 

relevant linear structure intact. The only input parameters are the coordinates of the data points 

and the number of dimensions that will be retained in the mapping. The NMR spectral intensities 
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Figure 4. Plots of the primary (PVT) and secondary (ANAM-Math) psychological 

classifiers for fatigue susceptibility reported by Harville et al. (2010) for fatigue resistant 

and fatigue susceptible subjects for average training (T) and testing trials (1-12). Testing 

trials were performed two times within six 4 h time-blocks over a 24 h period as indicated in 

Figure 1. 
 

 
 
from each dynamically adaptively binned urine spectrum provided multivariate data input to 

PCA.  The model parameters used to generate PCA scores plots (PC1 vs. PC2; representing 33% 

data variance) for the three classification groups (resistant, sensitive and variable) were based on 
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Figure 5. Representative 600 MHz NMR spectrum of urine from a fatigue-sensitive (A) and 

fatigue-resistant (B) subject 12 h prior to cognitive testing (0 h) and after 28 h of sleep 

deprivation. 
 

 
NMR spectra from all 23 subjects at 0 h and 28 h sleep deprivation time points; maximal 

differences in cognitive performance were noted between these two time points via 

psychological testing in a previous study (Harville et al., 2010). Although all time points from all 

subjects were included in the data analysis, only data for the 0 h and 28 h sleep deprivation time 

points were plotted for clarity (Figure 6). ). It should be noted that ideal model parameters for the 

analysis work best when differences exist between time points or treatment groups. PCA 

parameter models generated using similar NMR spectral profiles between time points or 

treatment groups will not result in distinguishing treatment group classification (i.e. no treatment 

effect). The data shown in Figure 6 indicate the centric mean ± 2SEM (or 95 % confidence 

interval [CI]) for the various fatigue classification groups at 0 and 28 h of sleep deprivation. 

Differences in mapping position reflect changes in biochemical composition of the urine. This 

scores plot clearly shows separation between the 95% CIs at 0 h and 28 h for each of the fatigue 

classification groups. Furthermore, the 95% CIs do not overlap in space between the fatigue 

resistant and fatigue sensitive subjects at both 0 h and 28 h. Interestingly, the fatigue variable 
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subjects’ 95% CI at 28 h was located in space between that of the fatigue resistant and fatigue 

sensitive groups 95% CIs (Figure 6). The 95% CIs for the fatigue variable group was found to 

overlap both the fatigue resistant and fatigue sensitive group 95 % CIs at both 0 and 28 h of sleep 

deprivation (Figure 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. PCA scores plot (PC1 vs. PC2) of all study subjects as a function of sleep 

deprivation time. Fatigue resistant (n =6; circles), fatigue sensitive (n =6; squares) and fatigue 

variable (n = 11; triangles) data are plotted at 0 h (open symbols) and 28 h (filled symbols) of 

sleep deprivation as the centroid mean value for the first two principal components (PC1 vs. 

PC2) ± 2SEM (95% CI) in two dimensions (ellipse). PCA model was generated from urine NMR 

spectra from all subjects at 0 h (12 h prior to cognitive testing) and 28 h of sleep deprivation. 

Other time points were included in the analysis, but were omitted from this plot. 
 

 
A PCA scores plot (PC1 vs. PC2; representing 47 % data variance) was then generated from the 

subject urinary metabolite profiles using the same model parameters as described above, but 

derived from only the fatigue-resistant and fatigue-sensitive classification groups at all time 

points.  Although the 95% CIs derived from the subjects of these two fatigue classification 

groups clearly shows separation between classification group (resistant vs. sensitive) at 0 h (12 h 

prior to the start of cognitive testing) and 28 h of sleep deprivation (Figure 7), the CIs were 

larger than that observed in Figure 6. The larger CIs observed when PCAs were performed using 
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only two classification groups (fatigue resistant and fatigue sensitive) were due to the greater 

variability (or SE) resulting from the decrease in “N” value from 23 to 12. 
 
 
 

 

 

 
Figure 7. PCA scores plot (PC1 vs. PC2) of fatigue-resistant and fatigue-sensitive subjects 

as a function of sleep deprivation time. Fatigue resistant (n =6; circles) and  fatigue-sensitive 

(n =6; squares) data are plotted at 0 h (open symbols) and 28 h (filled symbols) of sleep 

deprivation as the mean value for the first two principal components (PC1 vs. PC2) ± 2SEM 

(95% CI) in two dimensions (ellipse). PCA model was generated from urine NMR spectra as 

described in Figure 6 legend. Other time points were included in the analysis, but omitted from 

this plot. 
 

 
A PCA scores plot (PC1 vs. PC2) using the same model parameters as above and plotted over 

time, indicated that maximal group separation, based on urine analysis, occurred at 28 h of sleep 

deprivation (Figure 8). The urine collected at this time was 4 h following the maximal fatigue 

impact as determined by PVT and ANAM psychological testing performance reported in the 

previous technical report (Harville et al., 2010). This PCA plot also indicated that at 36 h of sleep 

deprivation the urinary metabolite profiles between the two fatigue classification groups 

appeared to be returning to that observed at the beginning of the study (Figure 8). This result also 

correlated with psychological testing results reported in the previous technical report that 

described improved performance related to what was termed a “going home” effect (Harville et 

al., 2010). 



22 

PENDING Distribution A: Approved for public release; distribution unlimited (approval given by local Public Affairs Office #88ABW-2013-XXXX) 

 

 

 
 

Figure 8. PCA plot of fatigue-resistant and fatigue-sensitive subjects over 36 h of sleep 

deprivation. Fatigue resistant (n =6; filled symbols) and fatigue-sensitive (n =6; open symbols) 

data are plotted at 0 h (circle), 20 h (triangle), 28 h (square) and 36 h (diamond) of sleep 

deprivation as the mean value for the first two principal components (PC1 vs. PC2) ± 2SE (95% 

CI) in two dimensions (ellipse). The 12 h sleep deprivation time point data overlapped with the 0 

h data and is not shown for purposes of clarity. 
 

 
4.6 Supervised Orthogonal Projection onto Latent Structures (OPLS) Discriminant 

Analysis of NMR Data 

Supervised discriminant analysis is a statistical technique to classify objects into mutually 

exclusive and exhaustive groups based on a set of measurable object's features. The purpose of 

OPLS-DA is to classify objects (people, things, etc.) into one of two or more groups based on a 

set of features that describe the objects (e.g. gender, age, fatigue state, diet, etc.). Therefore, 

supervised analysis attempts to reduce variability within a classification group while maximizing 

separation between classification groups. An OPLS-DA was conducted modeling NMR spectra 

from Resistant (all times) + Sensitive (all times) subjects. Results from this analysis (Q
2 

= 0.68; 

threshold = -0.044; leave-one-out predictive accuracy = 97%) indicated that these data are 

significant at p < 0.01.  The T-score scatter plot of study subjects clearly indicated that fatigue- 

resistant and fatigue-sensitive subjects clustered together and were separated from each other in 

graphical space at both 0 h and 28 h (Figure 9). Furthermore, within-group fatigue classification 

separation was also noted between 0 h and 28 h. It was also observed that clustering of subjects 

in both fatigue-resistant and fatigue-sensitive groups at 0 h was less variable than at 28 h; 
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Figure 9. T-scores scatter plot derived from an OPLS-DA of fatigue-resistant (n = 6; circle) 

and fatigue-sensitive (n = 6; square) data modeled by fatigue classification group at 0 h 

(open symbols) and 28 h (filled symbols). Fatigue resistant and fatigued-sensitive group 

subjects are observed to cluster together and be separated by group classification (dashed line) 

and time point (solid line). 
 

 
 
presumably, due to autoscaling the NMR data to this time point. However, it is also possible that 

overnight fasting prior to sample collection contributed to this observation. Variability in urinary 

metabolite profiles was observed to be greatest in the fatigue-sensitive group at 28 h when 

compared to the fatigue-resistant group at this time (Figure 9). When the subject clusters were 

plotted as the centric mean ± 2SEM (95% CI), clear separation between fatigue classification 

groups and time was clearly evident (Figure 10). 
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Figure 10. T-scores plot showing 95% CI derived from OPLS-DA of fatigue-resistant (n 

= 6; circle) and fatigue-sensitive (n = 6; square) data modeled by fatigue classification 

group at 0 h (open symbols) and 28 h (filled symbols). Data are plotted as the centric mean 

± 2SEM (95% CI ellipse). OPLS-DA was performed using a -1 cross validation, an alpha of 

0.01 and 500 permutation runs. Significant differences between fatigue classification groups 

was indicated with a Q
2 

value of 0.685, threshold value of -0.03 and accuracy value of 97%. 

OPLS-DA identified 23 significant NMR spectral peaks that were responsible for 

classification group separation. 

 
Using the significant variables, or spectral features, derived from this OPLS analysis that were 

responsible for the fatigue classification separation, 43 significant bins (spectral features) were 

identified that were found to be associated with 23 independent metabolite signals (Table 2). Of 

these 23 signals, we were able to identify 16 metabolites using the Chenomx commercial 

software database; 7 signals are unidentified as of yet (Table 2). Statistical analysis (t-test and 

Bonferroni multiple testing) indicated that 14 of the 23 metabolites were significantly altered 

when fatigue-resistant and fatigue-sensitive groups were compared; five of these metabolites 

could not be identified. 
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Table 2. List of 23 urinary metabolites determined to be significant by OPLS-DA modeling 

Resistant (all times) versus Sensitive (all times). NMR spectral data were normalized using 

Probabilistic Quotient Normalization (PQN).  Data represent the Mean ± SEM relative signal 

intensity values. Statistical analyses tested whether the means were different between Resistant 

vs. Sensitive groups. Statistically significant metabolites are highlighted. 

 
All times combined 

Mean ± SEM (X 10-4); N = 30 

Metabolite PPM Resistant Sensitive 

Methylmalonic acid 1.23 12.18 ± 0.77 13.15 ± 0.61 

2,2-Dimethylsuccinate 1.28 4.76 ± 0.27 ** 8.13 ± 1.04 

Alanine 1.49 7.73 ± 0.50 * 9.77 ± 0.59 

3-Hydroxyisovalerate 2.35 14.99 ± 1.61 * 11.06 ± 1.11 

Pyruvate 2.37 2.11 ± 0.12 2.78 ± 0.34 

Alpha-ketoglutarate 2.45 8.70 ± 0.43 10.14 ± 0.62 

Trimethylamine 2.88 2.24 ± 0.17 * 3.09 ± 0.27 

Tyramine 2.91 6.19 ± 0.32 ‡ 7.84 ± 0.33 

Creatinine 3.05 412.34 ± 13.33 411.41 ± 18.43 

Phosphorylcholine 3.23 19.57 ± 2.61 23.27 ± 2.35 

Betaine 3.27 12.97 ± 1.24 17.10 ± 1.91 

Taurine 3.43 17.01 ± 1.69 ‡ 26.97 ± 2.27 

N-methylnicotinate 4.48 1.48 ± 0.14 * 2.29 ± 0.28 

Homovanillate 6.99 2.54 ± 0.28 * 1.81 ± 0.18 

Tyrosine 7.21 12.01 ± 1.26 ** 7.75 ± 0.85 

Hippurate 7.84 21.03 ± 2.31 18.32 ± 1.43 

Unidentified # 1 1.128 0.80 ± 0.05 ‡ 0.54 ± 0.03 

Unidentified # 2 2.15 3.52 ± 0.34 4.43 ± 0.43 

Unidentified # 3 2.86 0.70 ± 0.08 * 1.06 ± 0.11 

Unidentified # 4 3.36 5.81 ± 0.31 ‡ 4.21 ± 0.26 

Unidentified # 5 4.14 7.30 ± 0.35 * 17.38 ± 4.16 

Unidentified # 6 7.015 0.47 ± 0.07 0.35 ± 0.04 

Unidentified # 7 7.31 1.02 ± 0.06 ‡ 0.62 ± 0.04 
 

Asterisk(s) indicates means are significantly different by t-test (*, p≤0.05; **, p≤0.01), and the 

dagger (‡) indicates means are significantly different by t-test and Bonferroni correction for 

multiple testing (p≤0.05). 
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4.6  Urinary Levels of Significant Metabolites 

Urinary levels of the statistically significant 14 metabolites highlighted in Table 2 were plotted 

over the 36 h sleep deprivation-induced fatigue study. Metabolite levels in urine were based 

upon relative signal intensities from the PQN-adjusted spectra, which accounts for differences in 

urine sample concentrations. Urinary metabolite levels at various time points over the 36 h of 

sleep deprivation indicated that tyrosine, homovalinate and 3-hydroxyisovalerate were observed 

to be at higher levels in fatigue-resistant subjects when compared to fatigue-sensitive subjects 

(Figure 11). In contrast, metabolite levels of tyramine, N-methylnicotinate, taurine, alanine, 2,2- 

dimethylsuccinate and trimethylamine were found to be elevated in fatigue-sensitive subjects 

over 36 h compared to fatigue-resistant subjects (Figure 11). Three of the five significant 

unidentified urinary metabolites with peaks at 1.128 ppm, 3.36 ppm and 7.31 ppm were found to 

be elevated in fatigue-resistant subjects over 36 h, when compared to fatigue-sensitive subjects, 

while the remaining two unidentified metabolite NMR peaks at 2.86 ppm and 4.14 ppm were 

found to be elevated in fatigue-sensitive subjects, when compared to fatigue resistant subjects 

(Figure 12). 
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Figure 11. Levels of significantly identified urinary metabolites, using Chenomx database, 

responsible for fatigue classification and monitored over 36 h of sleep deprivation using an 

interactive spectral de-convolution algorithm in MATLAB. 
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Figure 12. Levels of significant unidentified urinary metabolites responsible for fatigue 

classification, and monitored over 36 h of sleep deprivation using an interactive spectral de- 

convolution algorithm in MATLAB. 
 

 
5.0 SUMMARY AND DISCUSSION 

 
High operational tempos, sustained operations, disruptive sleeping environments and insufficient 

staffing make fatigue a growing problem in military operations. The impact of military fatigue 

on operational performance has been long known and dates back to the 1920s (Caldwell et al., 

09). Fatigue in the military affects both soldiers and aviators and is a significant safety and 

operational issue resulting in diminished alertness and performance (Kruger, 1991; Miller et al., 

2007). Pilot fatigue is well documented and is a significant problem in modern aviation 

operations, largely due to long duty periods, circadian disruptions, and insufficient sleep that can 

turn a routine operation into a potentially fatal situation (Weeks et al. 2010). With regards to the 

soldier, as a decision-maker, they interface with increasingly sophisticated technology for 
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communications, targeting, and weapons systems. Therefore, the human operator in both air and 

ground operations becomes the weakest element of these operations where sustained optimal 

performance is required. Scheduling, sleep deprivation, circadian disruptions, and extended duty 

periods continue to challenge the alertness and performance levels of both pilots and ground 

crews. At present, none of the real-time fatigue detection technologies (i.e. predictive modeling 

algorithms, EEG, biomathematical models of alertness) are adequately proven in an aviation 

environment to permit extensive utilization (Caldwell et al., 2009). 

 
Although there has been much research into sleep and sleep disorders, discovery of biomarkers 

that accurately characterize sleep deprivation, or predict sleepiness, has been difficult to realize. 

Currently, objective determinations of sleepiness, such as psychomotor vigilance and multiple 

sleep latency tests are not inclusive of all types of sleep deficiencies and are not conducive to use 

in environmental settings outside of the laboratory. Development of accurate and easy to use 

biomarkers is important because current subjective assessment of sleepiness and sleep disorders 

are not reliable. To date, there have been relatively few articles published concerning 

identification of biomarkers related to sleep deprivation or sleepiness. 

 
The current study investigated whether NMR-based metabolomics could be used to identify early 

metabolic markers of sleep deprivation-induced fatigue that was predictive of cognitive 

performance degradation. There is precedence for this approach in animal studies for predicting 

drug sensitivity using rats. Clayton et al., (2006) demonstrated that NMR analysis of rat urine 

prior to exposure to acetaminophen could predict animal sensitivity to this compound prior to 

being exposed. The urine is ideally suited for metabolomics analysis because it contains and 

concentrates essentially all endogenous and exogenous metabolites found in the body. These 

metabolites represent the end-products of countless interdependent macromolecular interactions. 

 
Therefore, the power of metabolomics is derived from the fact that these small molecules 

effectively reside at the top of the genomic pyramid. Because metabolomics measures the " end 

result” of multiple protein, gene, and environmental interactions, it is a particularly good 

i n d i c a t o r of an organism's phenotype or physiology (Wishart 07). Furthermore, it allows 

researchers the capacity to quantitate these molecular phenotypes. However, as with any 

technology, one must be aware of the limitations of the technology being applied to address a 

research hypothesis. 

 
Although NMR-based metabolomics requires minimal sample preparation, is less destructive and 

is quantitative, it is not as sensitive as other methods, such as mass spectrometry, and metabolites 

that are found in low concentration (< 0.1 mM) may not be detected. Metabolite variability, 

especially in humans, is another concern. It has been shown in rodents that species, strain, 

genetics, sex, age, hormone concentrations, diurnal cycles, diet, temperature, stress, and gut 

microflora all contribute to the metabolic composition of the urine (Dai 08). Variations in diet 

and environment are important confounding factors in human studies. However, these can be 
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controlled somewhat by monitoring food and drink intake and by restricting ingestion of specific 

foods and drugs that would compromise data analysis. In addition, collecting samples after 

fasting can also help eliminate dietary issues. This approach to reducing metabolite variability in 

human studies has been implemented and suggests that it is possible to collect consistent 

metabolomics data in clinical studies (Lentz 03). The current study utilized the same dietary and 

drug restrictions and fasting described previously by Lentz (2003). Visual inspection of 

representative NMR spectra in the present study (Figure 5) clearly indicated differences in 

metabolite profiles between subjects who were classified as fatigue-sensitive and fatigue- 

resistant via psychological testing (Figure 4; Harville et al., 2010). 

 
Cognitive testing conducted during Phase I of this study and reported by Harville et al. (2010), 

used a median split of the test scores for PVT and ANAM-core (math, grammatical reasoning 

and continuous performance) tests to classify subjects as fatigue-sensitive or fatigue-resistant. 

Findings published in this technical report indicated that PVT and ANAM-math tests were found 

to be the primary and secondary classifiers for fatigue, respectively. In the current technical 

report concerning classifying subject fatigue status based on urinary metabolite profiles, we 

further refined the subject classification groups. Use of the median split of cognitive test scores 

reported in the previous technical report of the 23 study subjects often led to variable results 

when different cognitive tests were compared. Therefore, for metabolite analysis we classified 

fatigue-resistance subjects (n = 6) as those subjects who performed well on all cognitive tests 

given (PVT and ANAM-core) and fatigue–sensitive subjects (n = 6) as those subjects who 

performed poorly on all cognitive tests given. The remaining 11 subjects were classified as 

fatigue-variable as they were found to perform well on some cognitive tests and poorly on others. 

 
Unsupervised PCA is the first step in the multivariate statistical analysis of NMR spectral data. 

This unsupervised PCA assumes no knowledge a priori and is based on the distribution of 

eigenvectors, or principal components, which best explains the variance in the NMR spectral 

data. To reduce the dimensionality of the transformed data, typically only the first 4 or 5 

principal components are used and these should capture a high percentage of the variance in the 

data if distinct patterns exist. PCA of urinary NMR spectra from fatigue-resistant, fatigue- 

sensitive and fatigue-variable subjects indicated that the urinary profiles for fatigue-resistant and 

fatigue-sensitive subjects were distinctive, exhibiting group separation occurring at both 0 h and 

28 h (Figure 6). Indeed, these analyses showed that 50-58 % of the data variance is captured in 

the first 4 PCs. It is important to note that the 0 h time point is actually the baseline urine sample 

obtained after an overnight fast and is 12 h prior to the 24 h cognitive testing portion of the study 

(see Figure 1). Therefore, the reported time points in all figures reflect subject awake-time. The 

fatigue-variable group demonstrated urinary metabolite profiles that were similar to the other two 

classification groups at 0 h and was found to be intermittent between the other two fatigue 

classification groups at 28 h. Interestingly, this separation was distinct from the fatigue-sensitive 

group and more similar to the fatigue-resistant group (Figure 6). 
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When PCA was performed using only the fatigue-resistant and fatigue-sensitive subjects, 

separation between these two groups is observed at both 0 h and 28 h of sleep deprivation 

(Figure 7). However, compared to Figure 6 where all 23 subjects were included in the analysis, 

the separation, although still significant, between the fatigue-resistant and fatigue-sensitive 

subjects at 28 h was not found to be as great; PCA correlation appeared to be greater when the 

model was built on the fatigue resistant and fatigue sensitive groups only (i.e. % variance 

captured in first 4 PCs was greater) compared to the 3-group analysis. Furthermore, the 

variability within the fatigue-sensitive group was also found to be greater than that observed in 

Figure 6. This was more likely due to the reduced “N” value from 23 to 12 subjects in the PCA 

resulting in a greater SE. When all time points were superimposed onto the scores plot from the 

analysis involving only the fatigue-resistant and fatigue-sensitive subjects, changes in urinary 

metabolite profiles can be observed over time (Figure 8). The 12 h time point is not shown in this 

Figure for clarity because it clustered with the 0 h baseline samples. An interesting observation 

here was that after 36 h of being awake, the urinary profiles between the fatigue-resistant and 

fatigue sensitive subjects were becoming more similar and were moving back towards their 0-12 

h profiles. 

 
Harville et al. (2010) noted that cognitive test scores improved towards the end of their 

physiological study (36 h time point) and hypothesized this improvement to have been the result 

of a psychological phenomenon called “the going home effect”; subjects’ cognitive performance 

increases because of the realization that they would be returning home soon. Interestingly, the 

amounts of tryrosine, HV, and 3HI, all of which were elevated in the urine of the fatigue- 

resistant subjects, appeared to become similar in concentration between the two fatigue 

classification groups at the end of the 36 h sleep-deprivation study (Figure 11). This also was 

found to be associated with the so called “going home” effect reported in the previous technical 

report (Harville et al., 2010) to account for improved cognitive performance by all subjects 

during the last testing session of the study. In contrast, with the exception of tyramine, the 

significant metabolites elevated in the urine of the fatigue-sensitive subjects appeared to remain 

elevated throughout the 36 h sleep-deprivation period of the study. The levels of urinary 

tyramine in the fatigue-sensitive group becoming more like that observed in the urine of the 

fatigue-resistant group towards the end of the study may be the result of increased protein intake 

(i.e. tyrosine metabolism) in this group because all subjects were on a standard diet at the onset 

of the 24 h period of sleep-deprived cognitive testing. Previous work has shown that as little as a 

4% increase in protein to a high carbohydrate diet can abolish the effects of tryptophan (induces 

sleepiness) and improve cognitive performance (Dye et al., 2000). 

 
Once it was shown that PCA of human urine from study subjects demonstrated group separation 

with regards to fatigue classification, a supervised analysis (OPLS-DA) was conducted to 

determine which metabolites were responsible for this observed separation in PCA scores plot. In 
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an OPLS-DA, knowledge is imparted to the data sets (i.e. fatigue classification, time, etc.). The 

objectives of an OPLS-DA are to maximize the separation between groups, while minimizing the 

variation within groups, and to identify the salient spectral features (or metabolites) responsible 

for group differences. When OPLS-DA was performed using NMR data obtained from the 

fatigue-resistant and fatigue-sensitive groups (n = 6/group), a scatter plot of all subjects involved 

in the analysis show a clear separation between fatigue-group classification and time (Figure 9). 

As observed with PCA, the OPLS-DA scatter plot shows that the fatigue-sensitive group 

demonstrated the greatest variability between subjects. When the data were plotted as the mean ± 

2 SE (95% CI; Figure 10), maximal separation between groups and reduced variability within 

groups is clearly evident when compared to similar PCA scores plots between these two groups 

(Figure 7). 

 
In generating the figures for OPLS-DA, NMR spectral peaks are identified that were significant 

and responsible for group separation. These spectral peaks can then be identified using 

commercial software database such as Chenomx. OPLS-DA identified 23 significant spectral 

peaks that were responsible for classifying study subjects as resistant or sensitive to sleep 

deprivation-induced fatigue, and 16 of these peaks were assigned to specific metabolites 

identified (Table 2). Although Chenomx is a leading database for identifying metabolites from 

NMR data, it is not complete. It is noteworthy that three of the significant unidentified 

metabolites that were elevated in the urine of the fatigue-resistant group (i.e. 1.128 ppm, 3.36 

ppm and 7.31 ppm) demonstrated a similar concentration pattern as that observed for the three 

significantly identified urinary metabolites (i.e. tyrosine, HV and 3HI) of fatigue-resistant group 

over time (Figure 12). The remaining two unidentified significant metabolites (i.e. 2.86 ppm and 

4.14 ppm), as that observed in the fatigue-sensitive group, remained elevated in the urine over 

the 36 h period of sleep deprivation. Although 7 of the 23 metabolite spectral peaks could not be 

identified, it may be possible to identify them using 2D NMR in the future (e.g. TOCSY, 

HMQC). 

 
Statistical analysis of the 23 significant spectral peaks identified by OPLS-DA that were 

responsible for fatigue group classification indicated that 14 were statistically significant. Nine 

of these spectral peaks could be identified using Chenomx, while 5 could not (Table 2; 

highlighted metabolites). A number of the identified urinary metabolites in both the fatigue- 

resistant and fatigue-sensitive subjects were of particular interest. Taken together, our data 

showed that measured biomolecular endpoints (urinary metabolite profiles) correlated with 

psychological endpoints (PVT and ANAM) for determining cognitive performance outcome. 

This was observed not only at the 36 h time point, but also at the 28 h time point where 

psychological testing indicated peak fatigue occurring between 24-28 h of sleep deprivation in 

all groups (Harville et al., 2010). 

 

 
5.1 Fatigue Resistant 
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With regards to the fatigue-resistant group, 6 of the statistically significant urinary metabolite 

levels were found to be higher when compared to the fatigue–sensitive group. However, only 3 

metabolites could be identified using the ChenoMx metabolomics database and these were: 3- 

hydroxyisovalerate (3-HI), tyrosine and homovanillate (HV). Increased levels of these three 

metabolites in urine are suggestive of greater protein metabolism in the fatigue-resistant group. 

Tyrosine is of particular interest because it is the precursor to three neurotransmitters: dopamine, 

norepinephrine and epinephrine (see Figure 13). 

 
Although tyrosine can be synthesized from phenylalanine in humans, it is generally derived from 

the diet where it is found in high quantities in protein-rich foods. The role of tyrosine in 

countering the effects of fatigue are well known and suggests that supplemental administration of 

tyrosine increases brain catecholaminergic neurotransmission and has beneficial effects on 

various behavioral parameter, associated with resistance to stress (Lieberman 1994 and 1999). 

Other human studies have shown that tyrosine has a positive effect on cognitive performance 

during exposure to various stresses such as temperature and altitude (Banderet and Lieberman, 

1989; Shurtleff et al., 1994). Tyrosine has also been shown to enhance performance in 

individuals exposed to psychological stress (Deijen and Orlebeke, 1994). These findings in 

humans are similar to those observed in animals showing improved cognition when under stress. 

 
As indicated above, the dopaminergic pathway has been associated with a more wakeful state. 

Dopamine synthesis in dopaminergic neurons begins with tyrosine where it is obtained from the 

circulation. Tyrosine, like other large neutral amino acids (i.e. tryptophan, phenylalanine, 
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Figure 13. Schematic pathways for synthesis of dopamine, noradrenaline, adrenaline, and 

serotonin. 5-HTP, 5-Hydroxytryptophan; PNMT, phenylethanolamine-N-methyl transferase; 

MAO, monoamine oxidase; COMT, catechol-O-methyl transferase. (Modiefied from Rubí and 

Maechler, 2010). Ovals indicate metabolites found to be significantly elevated in the urine of the 

fatigue-resistant group by NMR. 
 

 
 
leucine, histidine, etc.), cannot cross the BBB and must be actively transported across. Once 

tyrosine crosses the BBB, it is taken up and concentrated in catecholamine neurons. Once inside 

the cell, tyrosine is converted to dopamine via dihydroxyphenylalanine (DOPA). Dopamine can 

then be used as a substrate to generate norepinephrine and epinephrine or be metabolized to HV. 

 
In the kidneys, more than 95% of amino acids are filtered from the plasma and reabsorbed by the 

proximal tubules and returned back into circulation (Parvy et al., 1988). Therefore, urinary levels 

of amino acids are typically low. However, in the present study we observed significantly higher 

levels of tyrosine in the urine of the fatigue-resistant group by NMR analysis than that observed 

in the urine derived from the fatigue-sensitive group. We believe that this finding was due to 

greater dietary intake of protein in the fatigue-resistant group than that in the fatigue-sensitive 

group. This is supported by a blind dietary analysis of subject food logs using the Nutrition Data 

database that indicated a significant 2-fold greater protein intake by the fatigue-resistant subjects 
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~ 8 h prior to the 24 h of cognitive testing (Figure 3). Furthermore, a number of previous studies 

have shown increases in tyrosine, as well as other amino acids, in urine following ingestion of 

protein-rich foods (Brand et al., 1997; Parvy et al., 1988; Steele et al., 1950). This is believed to 

occur when the kidney tubular load for amino acids exceeds the rate of reabsorption and urinary 

excretion of amino acids increases proportionally (Odle et al., 1992). 

 
Homovanillate was another metabolite found to be elevated in the urine of fatigue-resistant 

subjects when compared to fatigue-sensitive subjects. A review article by Amin et al. (1992) 

indicated that dopamine is predominantly metabolized to HV and mostly excreted in a free 

unconjugated form. The unconjugated HV produced in the brain moves directly into the blood 

via active transport (organic anion transporter) across the BBB. This review also indicated that 

animal and human studies have shown that a portion of urinary measured HV originated from the 

brain. Therefore, it is possible that HV may provide an index of central dopamine neuronal 

activity. Our finding of elevated HV in the urine of the fatigue-resistant group lends further 

support of increased protein consumption leading to increased tyrosine levels and enhancement 

of the dopaminergic pathway in the brain. Elevated levels of 3-HI in the urine adds additional 

evidence that increased protein consumption in the fatigue-resistant group contributed to 

enhanced cognitive performance. This metabolite can be formed enzymatically utilizing acetyl 

CoA and is a catabolic intermediate of leucine associated mitochondrial metabolism. Increased 

dietary protein intake by the fatigue-resistant group would have increased the availability of 

leucine for mitochondrial metabolism to form 3-HI. Three other metabolites were also found to 

be elevated in the urine of the fatigue-resistant group, but they could not be identified using the 

Chenomx database. Future analysis by 2D NMR will shed some light as to the identity of these 

metabolites. Taken together, our data suggest that the higher levels of protein ingested by the 

fatigue-resistant group, when compared to the fatigue-sensitive group, ultimately lead to 

enhanced cognitive performance via stimulation of the dopaminergic pathway (Figure 13) as 

evidenced by higher levels of tyrosine, HV and 3-HI measured in the urine by NMR. 

 

 
5.2 Fatigue Sensitive 

 
In contrast to the urine profiles of the fatigue-resistant group, a number of urinary metabolites 

were identified in the fatigue-sensitive group that could be associated with a more sleepiness, or 

more fatigued, state. Eight metabolites in the urine of the fatigue-sensitive group were found to 

be significantly elevated when compared to the fatigue-resistant group. Of these eight 

metabolites, only six could be positively identified using the Chenomx database and these were: 

alanine, 2,2-dimethylsuccinate, trimethylamine (TMA), tyramine, taurine and N- 

methylnicotinate (NMN; Table 2). Two additional metabolites were observed to be significantly 

elevated, but could not be identified using Chenomx database. In addition, blind dietary analysis 

using the Nutrition Data database indicated that the fatigue-sensitive subjects ingested fewer 

calories (Figure 2A) and a greater percentage of their total caloric intake was derived from 
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carbohydrates (47%; Figure 2 B). Interestingly, half of the identified significant urinary 

metabolites in the fatigue-sensitive group may be linked to this observed higher percentage of 

dietary intake being derived from carbohydrates. 

 
Alanine is a nonessential amino acid that can be formed in the body from the conversion of 

carbohydrate pyruvate (generated via the glucose-alanine cycle). Therefore, alanine plays an 

important role in, and in the regulation of, glucose metabolism. Since alanine levels parallel 

glucose levels in the blood, significantly increased levels of alanine observed in the urine of the 

fatigue-sensitive group in the present study may be attributed to their higher dietary carbohydrate 

intake. This is partially supported by the observation that urinary pyruvate (an intermediate 

product in the alanine-glucose cycle) was also found to be elevated in the fatigue-sensitive group 

when compared to the fatigue-resistant group, but was not statistically significant (Table 2). 

However, pyruvate was one of the original 23 metabolites identified by OPLS-DA to be 

responsible for group classification (Table 2). 

 
Previous studies have shown that methyl esters of succinate are potent insulin secretagogues in 

pancreatic β-cells (MacDonald, 1993; MacDonald and Fahein, 1988). Once taken-up by the cell, 

these esters of succinate are hydrolyzed intracellularly to succinate. Initiation of insulin release 

by esterified succinate, and not by other esters of TCA intermediates, indicates that 

mitochondrial metabolism alone is sufficient to initiate insulin release (MacDonald and Fahein, 

1988).  2,2-Dimethylsuccinate is a nutrient secretagogue that has been shown to be as effective 

as glucose in stimulating insulin release from the pancreas (Fahien and MacDonald, 2002).  Its 

significant elevation in the urine of the fatigue-sensitive group is suggestive of greater 

carbohydrate ingestion and metabolism. 

 
Taurine, a sulfur amino acid, has many diverse biological functions (i.e. brain inhibitory 

neurotransmitter, cell membrane stabilizer, ion transport facilitator, etc.). One of the important 

functions of taurine is to reduce blood sugar. Studies involving diabetic rat strains have shown 

that taurine significantly reduces weight and blood sugar in these animal models (Pop-Busui et 

al., 2001; Nakaya et al., 2000). Taurine has been shown to act as a glycation inhibitor, resulting 

in decreased formation of advanced glycation end products, both in vitro and in vivo (Huang et 

al., 2008; Verzola et al., 2002). Therefore, it is possible that the significantly elevated level of 

taurine found in the urine of the fatigue-sensitive group is a response to increased blood glucose 

levels due to high carbohydrate ingestion. Although taurine can be obtained from the diet by 

ingestion of protein, it can also be synthesized in adult humans. Therefore it is also possible that 

the elevated taurine levels observed in the fatigue-sensitive group may have been due to 

synthesis in response to high carbohydrate intake. Taurine has been shown to be synthesized and 

stored in adipocytes by two cellular pathways (Ueki and Stipanuk, 2009). 
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The role of the remaining three significantly elevated urinary metabolites, with regards to fatigue 

sensitivity, is not clear. Tyramine (metabolite of tyrosine), trimethylamine (TMA) and N- 

methylnicotinate (NMN) are metabolites more likely to have been obtained from the diet and, 

with the exception of tyramine, are plant-based metabolites. Tyamine, a monoamine, is found in 

foods as the result of tyrosine decarboxylation during fermentation. NMN (or trigonelline) is an 

alkaloid found in a wide variety of plants and in coffee. However, NMN is an important dietary 

betaine. Trimethylamine is a product of decomposition and is derived from gut microflora. 

Although these metabolites do not appear to have a link to a specific biochemical pathway of 

mammalian metabolism linked to fatigue, significant changes in methylamine (TMA) and 

nucleotide (NMN) metabolism have been observed in type 2 diabetes in both rodent and human 

models (Salek et al., 2007). 

 

 
6.0 CONCLUSIONS 

 
The results of the present study demonstrated that NMR-based metabolomics could be used as a 

noninvasive approach to predict and characterize sleep deprivation-induced fatigue impact on 

cognitive performance. Furthermore, our results indicated that NMR-based metabolomics 

analysis of human urine identified changes in urinary metabolite profiles that corresponded to 

psychological testing scores of cognitive performance under sleep deprivation-induced fatigue. 

More importantly, NMR-based metabolomics was also capable of predicting susceptibility to 

sleep-deprivation-induced fatigue 12 hours prior to the 24 hour cognitive testing phase of the 

study. Elevated levels of tyrosine, HV and 3-HI in the urine of the fatigue-resistant subjects 

suggest that enhanced cognitive performance under sleep deprivation-induced fatigue may have 

been due to increased protein intake prior to the start of the cognitive testing phase of the study 

(see Figure 1). A protein-rich diet can lead to activation of the dopaminergic pathway via 

increased plasma tyrosine levels following protein digestion. This was partially supported in the 

present study by the observation that nutritional analysis of subject food logs 8 h prior to the start 

of the cognitive testing phase of the study indicated that the fatigue-resistant subjects ingested a 

significant 2-fold higher amount of protein than the fatigue-sensitive subjects. A number of 

studies have shown the benefits of dietary protein and tyrosine supplementation on improving 

cognitive function (Fischer et al., 2001 and 2002; Dye et al., 2000; Lieberman, 2003). Military 

studies from all three US services, and one European military study, have all reported positive 

findings for tyrosine with regards to enhanced cognitive performance. In addition to the above 

findings, three of the significant metabolites that were found to be elevated in the urine of the 

fatigue-sensitive subjects (taurine, alanine and 2,2-dimethylsuccinate) were strongly associated 

with a high carbohydrate diet. 

 
Taken together, the collection of six identified urinary metabolites (tyrosine, HV, 3-HI, taurine, 

alanine and 2,2-dimethylsuccinate) may provide a useful subset of urinary metabolite markers to 

screen, or select, personnel for demanding missions where fatigue is expected to play a role. It is 
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possible that future identification of the five significant unidentified metabolites using 2D NMR 

may result in an expansion of the number of metabolites used for personnel mission readiness 

screening. 

 
The results of this study also raise the issue of adequate nutrition for optimal performance. Based 

on analysis of the study food logs, it was apparent from visual inspection of the food logs that a 

number of service members were making poor choices with regards to food selection. This was 

later verified by the study dietitian using the Nutrition Data analysis of the food logs. The study 

results also indicated that nutritional education of young service men and women may be 

necessary as part of their training. Particular attention should be paid to assuring that proper 

nutritional requirements are being met prior to, during and following missions to maintaining 

optimal physical and cognitive performance readiness. 

 
Although the previous technical report attributed increased cognitive performance at the end of 

the sleep-deprivation study due to a psychological “going home” effect, our data suggest that this 

phenomenon may have resulted due to changes in nutritional status. There has been a growing 

interest in the potential effects of food on various aspects of psychological state, and mental and 

physical performance (Dye et al., 2000). All of the subjects ate the standard diet provided (Table 

1) during the 24 h cognitive testing portion of the study. Thus, any nutritional deficiencies prior 

to the cognitive testing phase of the study would progressively be reversed during the 24 h 

course of cognitive testing, and may explain the increase in cognitive performance observed at 

the end of the 36 h sleep deprivation-induced fatigue testing. This was partially supported by the 

finding that NMR urinary profiles obtained from the fatigue-resistant and fatigue-sensitive study 

subjects began to overlap at this time point and appeared to be more representative of their pre- 

testing profiles at 0 h (Figure 8). 

 
It is important to note that this study was not designed as a nutritional investigation into the 

effects of macronutrients on cognitive performance, but that NMR data analysis of urine from 

sleep-deprived subjects indicated that nutrient metabolites seemed to play a role in the 

classification of subject cognitive performance outcome under this condition of induced fatigue. 

Therefore, care should be taken when considering the interpretation of the current study results 

due to the low sample size (N-value) commonly seen with these types of studies. We attempted 

to control as many confounding factors as possible, such as dietary, pharmacological, alcohol 

and smoking restrictions, overnight fasting, maintenance of food logs, gender, and timing of all 

meals. However, other numerous factors exist (e.g. age, ethnicity, underlying medical issues, 

susceptibility to stress, etc.). Additional work with macronutrients, especially carbohydrate, and 

diets that vary in protein to carbohydrate ratio, is also necessary. In general, little work on the 

effects of dietary constituents in mixed diets has been conducted and their chronic effects on 

behavior have not been investigated. Such studies would be of great value, not only to address 

military requirements, but for the civilian population as well. Further research is required to 
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elucidate the specificity of the mechanisms involved in the effects of macronutrients on mental 

performance. 

 
Currently, objective biomarkers of fatigue are based on difficult to interpret and frequently 

burdensome electrophysiologic or behavioral tests (e.g. multiple sleep latency test, PVT and 

pupillometry). Although these tests have been shown to be practical for scientific investigations, 

they are difficult to use in field studies and would have little useful application in military 

operational environments. To date, no reliable biomarkers of fatigue have been developed. 

However, there is an important need for this technology. Given the magnitude of the problem of 

sleep deprivation-induced fatigue to the public and the military, this is not surprising. Therefore, 

more engaged basic research is required to address this problem. A general theme that has been 

emerging as a result these types of research efforts is the importance of identifying simple and 

quantifiable biomarkers of fatigue (Jones et al., 2005; Van Dongen et al., 2005; Dawson and 

McCulloch, 2005). The results from this study demonstrated that changes in urinary metabolite 

profiles, using NMR-based metabolomics, were found to correlate with changes in psychological 

testing performance (PVT and ANAM) under conditions of sleep deprivation. The present study 

also provided evidence that metabolomics may be a useful tool for identifying potential 

molecular biomarkers (urinary metabolites) predictive of cognitive performance ability when 

sleep deprived. 
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LIST OF ACRONYMS 
 

 
AFRL Air Force Research Laboratory 

ANAM Automated Neuropsychological Assessment Metrics 

BBB Blood Brain Barrier 

CI Confidence Interval 

CNS Central Nervous System 

CoA Coenzyme A 

CPT Continuous Performance Test 

DOPA Dihydroxyphenylalanine 

EEG Electroencephalography 

3-HI 3-Hydroxyisovalerate 

HMQC Heteronuclear Multiple-Quantum Correlation 

HV Homovanillate 

ICD Informed Consent Document 

LC/MS Liquid Chromatography/Mass Spectroscopy 

NMN N-Methylnicotinate 

NMR Nuclear Magnetic Resonance 

NOES Nuclear Overhauser Effect Spectroscopy 

OPLS-DA Orthogonal Projections onto Latent Structures-Discriminant Analysis 

PC Personal Computer 

PCA Principal Component Analysis 

ppm Parts Per Megahertz 

PQN Probabilistic Quotient Normalization 

PRESS Predicted Residual Sum of Squares 

PVT Psychomotor Vigilance Task 

SEM Standard Error of the Mean 

SSY Sum of Squares “Y” 

TMA Trimethylamine 

TOCSY Total Correlation Spectroscopy 

TSP Trimethylsilylpropionic (2, 2, 3, 3 d4) acid 

WPAFB Wright-Patterson Air Force Base 

http://en.wikipedia.org/wiki/Electroencephalography
http://www.google.com/url?sa=t&amp;rct=j&amp;q=noesy%2Bpulse%2Bsequence&amp;source=web&amp;cd=12&amp;cad=rja&amp;ved=0CGUQFjAL&amp;url=http%3A%2F%2Fszerves.chem.elte.hu%2Foktatas%2Fea%2FPerczel%2Fnoesy1.pdf&amp;ei=Fqx1UYqzDcaSqgHhroGYDw&amp;usg=AFQjCNG06w61unaffggNvJvwQY4Ix659IA&amp;bvm=bv.45512109%2Cd.b2I

