Wright State University
CORE Scholar

The Ohio Center of Excellence in Knowledge-

Kno.e.sis Publications Enabled Computing (Kno.e.sis)

7-2003

Toward a Comprehensive Supplement for Language Courses

Krishnaprasad Thirunarayan
Wright State University - Main Campus, t.k.prasad@wright.edu

Stephen P. Carl
Wright State University - Main Campus

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

6‘ Part of the Bioinformatics Commons, Communication Technology and New Media Commons,
Databases and Information Systems Commons, OS and Networks Commons, and the Science and
Technology Studies Commons

Repository Citation
Thirunarayan, K., & Carl, S. P. (2003). Toward a Comprehensive Supplement for Language Courses. .
https://corescholar.libraries.wright.edu/knoesis/892

This Presentation is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

™

N

" Toward a Comprehensive Supplement

- for Language Courses

Krishnaprasad Thirunarayan & Stephen P. Carl

Department of Computer Science & Engineering
Wright State University

Dayton, OH-45435

Pracad

Outline

Relevance of techniques and tools for
Programming Language (PL) Design and
Implementation to Information Technology

= Simplified illustrative examples of related concepts
and features

Symptoms showing student lack of
understanding of PL basics

Concrete ways to improve assimilation of PL
concepts and constructs with benefits to IT

education via analogies

'E.E.
WRIGHT STATE

Pracad

Information Systems :
Representation and Processing

7

Syntax

s 'Standard” Language of Expression and
Interchange

* Code reuse (DOM)

+ Ease of parsing

s E.g.,, XML-DTD, which defines permissible data and
attribute fields, based on context-free grammars
(actually, Deterministic Extended Backus Naur
Formalism)

= XML documents can be self-describing (using
DTD schema) and hence, can be validated.
WRIGHT STATE

Pracad

(cont'd)

~ #XML/DTD is just a context free
grammar.

#A DOM is just a parse tree.

#An XML parser does the same job as

LEX/YACC except that its interpreted.

O®. Windley: Syntactic sugar makes the syntax of
a language pretty. XML is syntactic arsenic.
@@ Wadler: XML is just a notation for trees, a
verbose variant of LISP S-expressions.
G
WRIGHT STATE

Pracad

DTD Example

1y

<?xml version="1.0"?>
<IDOCTYPE BOOK [
<IELEMENT p (#PCDATA)>
<IELEMENT BOOK
(OPENER,INTRODUCTION? (SECTION | PART)+)>

<IELEMENT OPENER (TITLE-TEXT)

<IELEMENT TITLE_TEXT (#PCDATA)>

<IELEMENT INTRODUCTION (HEADER, p+)+>

<IELEMENT PART (HEADER, CHAPTER+)>

<IELEMENT SECTION (HEADER, p+)>

<IELEMENT HEADER (#PCDATA)>

<ELEMENT CHAPTER (CHAPTER_NUMBER, CHAPTER_TEXT)>
<ELEMENT CHAPTER_NUMBER (#PCDATA)>

<IELEMENT CHAPTER_TEXT (p)+>

4
WRIGHT STATE

Pracad IMITUrocrTw [=

D

Pracad

<BOOK>
<OPENER>
<TITLE_TEXT>All About Me</TITLE_TEXT>
</OPENER>
<PART>
<HEADER>Welcome To My Book</HEADER>
<CHAPTER>
«CHAPTER_NUMBER>CHAPTER 1</CHAPTER_NUMBER>
<CHAPTER_TEXT>
«p>Glad you want to hear about me.</p>
<p>There's so much to sayl</p>
<p>Where should we start?</p>
<p>How about more about me?</p>
<«/CHAPTER_TEXT>

</CHAPTER>
<«/PART>
</BOOK>
WRIGHT STATE

FrarnitsrrocC rTr-rw

#Semantics

s Machine processable tags embedded into
human sensible documents (Semantic Web)

+ Interoperability issues due to lack of consensus
on the semantics of XML-tags
» Different concepts, same tags -> Context-sensitivity.
= Same concept, dissimilar tags -> Equivalence issue.
+ Transformations using recursive tree traversals

+ Content extractors/semantic taggers based on
compiler-frontend tools

WRIGHT STATE

Pracad

| @ Reasoning

s Declarative specification and Querying
+ Logic and functional languages; Ontologies

+ Source to source transformations in Search
Engines, Semantic Taggers, etc

= Defining Interface and Behaviors

+ Separation of concerns
» E.g., Web services context

= Reliability and Security
* Type systems

T 1 i

i =

t
WRIGHT STATE

Pracad &

Other Issues

J #Portability across Platforms

s Standardization through specification
* E.g., Language reference manuals

#®Robust Architecture

= Smooth assimilation of changes, over time
+ E.g., Object-Oriented Paradigm

#Rapid Prototyping

= Improving programmer productivity
+ E.g., Scripting languages

IR
WRIGHT STATE

Educational Gaps w.r.t. PL and IT

In spite of good resources, students

#use technical jargon (and acronyms)
without understanding them.

#®describe a concept in abstract terms but
cannot recognize or apply it concretely.

#use hackneyed examples when
requested to provide illustrations.

WRIGHT STATE

1N

Retrospective on Causes

@ Examples are from correlated sources

Different languages embody the same
concepts using different syntax, and similar
looking syntax in different languages can
have subtly different semantics.

=« E.g., Java and C++ syntax

Inadequate mathematical training and
maturity

R
WRIGHT STATE

11

= Phil Windley summarizes the related IT
education problem thus:

» Most of the computing literature on XML, SOAP,
and Web Services fails to relate these
technologies back to CS theory and PL that any
computer scientist should know.

+ The writings on these technologies is full of
hype, making them seem more complicated
than they are.

» Most programmers are not familiar with RPC or
messaging to any great extent and so their
generalizations are even more obtuse.

T 1 i

i =

t
WRIGHT STATE

Pracad & 17

A Proposal for Effective Teaching of
Language Features and Techniques

7

Develop an example-rich supplement that
gets across language fundamentals and a
comparative study of modern languages

= E.g., Focus on similarities, differences, subtleties,
and trade-offs among related features

s E.g., Illustrate IT issues lucidly in a simpler setting

Provide progressively difficult but well-
integrated exercises, to apply and gauge, the
grasp and appreciation of the material

WRIGHT STATE

Pracad 1732

Supplementary Topics and Materials for
Comparative Languages

7

#Programming Styles

= Imperative style

¢+ L-values vs R-values
s E.g., assignment vs |-value yielding function

s Imperative vs Functional

+ Iteration vs Recursion
m £.9.,, I < R :: expressive power argument
s E.g., I /\ R :: tail-recursion and space-time trade-off

[T

S

t
WRIGHT STATE

Pracad Y

14

TAIL RECURSION:

int fibtr(int n, int prevl, int prev2) {
it (n==0) return prevl;
else if (n==1) return preve;

else return fibtr(n-1, prev2, prevl + prev2);

WRIGHT STATE

15

Exercises :
Specification and Implementation

= E.g., Parsing arithmetic expressions, type
checking/inference, and generating bytecodes
=« E.Q.,
+ HW: Calculator for constant arithmetic expressions

+ PL: Augmenting expressions with variables,
programmable calculator, etc

! Eg .
+ Spec. Algebraic specification of Polynomials
+ HW: Implementing polynomials

+ PL: Augmenting polynomial calculator with memory,
programmable polynomial calculator, etc

Pracad IMxIMTUrnocrTy 156

)

@ Procedural vs OOP Architecture

= Continuity : evolution under updates

» In OOP Style, smooth assimilation of new
implementation of an abstract behavior (E.g., data
format changes)

+ In Procedural Style, smooth assimilation of new
functionality
= Interfaces : Client-Server View

* In Procedural Style, a client is responsible for invoking
appropriate server action.

* In OOP Style, a server is responsible for conforming to
the standard interface, assumed by the client.

Pracad 17

(define (size C)
(cond ((vector? C) (vector-length C))
((pair? C) (length C))
((string? C) (string-length C))
(else =)

(size ‘(one " " two' ' 3))

WRIGHT STATE

1Q

interface iCollects { int size(); }

y

class cVector extends Vector implements iCollects {}
class cString extends String implements iCollects {
public int size() { return length(); }
}
class cArray implements iCollects {
iInt[] array;
public int size() { return array.length; }

}

iCollects ¢ = new cVector(); c.size();

A
WRIGHT STATE 5

Pracad

s Declarative vs Procedural

+ “Interpreter supplies control strategy for using
the same declarative specification to answer

different queries”

append([], L, L).
append([H | TLL,[H|R]):-
append(T, L, R).

m "." and “:-" are logical connectives that stand for
“and' and “/f" respectively.

s "[]"and "|" stand for empty list and cons operation.

WRIGHT STATE

Pracad "

+ Concatenation
m Sig: list x list -> list
= append([1], [2,3], R).

Pracad

+ Verification
= Sig: list x list x list

= append([1], [2,3], [1,2,3]).

+ Constraint solving
= Sig: list x list -> list

« append(R, [2,3], [1,2,3]).

m Sig: list -> list x list
= append(A, B, [1,2,3]).
* Generation

m Sig: -> list x list x list
= append(X, Y, Z).

A
WRIGHT STATE

FrarnitsrrocC rTr-rw

71

Exercises

= Paradigm Comparison

+ Develop attribute grammar for static semantics
of expressions

+ Modify to obtain an executable specification in
a logic language (e.g., Prolog Definite Clause
Grammars)

+ Convert into an object-oriented language (e.q.,
Java), a functional (e.g., Scheme) and an
imperative language (e.g., C).

+ Explore relationship between magic sets in
databases and attribute grammars

T 1 i

i =

t
WRIGHT STATE

Pracad & 217

4 Programming Language Design
« Portability ("Importance of Language Definition”)

#include <stdio.h>

main() {
int i =b;
printf("\t i = %d, i/++i = %d, i = %d\n\n",
i, i/, i)
}
/* Compilers: cc, gcc
SUNS3 : =6, i/++i=1,i=D
SPARCZ0. i=6, i/++i =1,i=6
ALPHA . =D /a2l is6
MIPS . LB gfes =1 jish
INTUITION. VT TR T RIS IR AT TR
WRIGHT STATE

]

#Object-Oriented Languages

1y

y

+ Class
s Static description; unit of modularity; type
* Object
= Runtime structure
+ Inheritance and Polymorphism
s Code reuse
* Polymorphism and Dynamic Binding

s Representation independence; Information hiding
s Interaction with type system

+» Inheritance vs Delegation

WRIGHT STATE

pr.:lﬂ;ld FrarnitsrrocC rTr-rw

24

class P {
public void f(P p)

&——{-System.out.printIin("f(P) in P. "); }
}

class C extends P {
public void f(P p)
{ System.out.printin("f(P) in C."); }
public void f(C cp)
{ System.out.printIn("f(C) in C."); }
}

WRIGHT STATE

T

class DynamicBinding {
public static void main(String[] args) {

l‘h_’_'.l'

Ppx =newP(). Ccx = new C()

Ppy =cx;

px.f(px): //f(P) in P.

px.f(cx); LR in P
py.f(px): //f(P) in C.

py.f(cx): //f(P) in C.

cx.f(px): //f(P)in C.

cx.f(cx); //f(C) inC.

WRIGHT STATE

Conclusion

Discussed an example-rich approach
to comparative languages

#®Based on our experience, this approach
s effective

#\We believe that IT educators can
venefit both from content and
nedagogy proposed here.

IR
WRIGHT STATE

37

