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Outline

# Relevance of techniques and tools for
Programming Language (PL) Design and
Implementation to Information Technology

= Simplified illustrative examples of related concepts
and features

# Symptoms showing student lack of
understanding of PL basics

# Concrete ways to improve assimilation of PL
concepts and constructs with benefits to IT

education via analogies

_'E.E._
WRIGHT STATE

Pracad



Information Systems :
Representation and Processing

7

# Syntax

s 'Standard” Language of Expression and
Interchange

* Code reuse (DOM)

+ Ease of parsing

s E.g.,, XML-DTD, which defines permissible data and
attribute fields, based on context-free grammars
(actually, Deterministic Extended Backus Naur
Formalism)

= XML documents can be self-describing (using
DTD schema) and hence, can be validated.
WRIGHT STATE
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(cont'd)

~ #XML/DTD is just a context free
grammar.

#A DOM is just a parse tree.

#An XML parser does the same job as

LEX/YACC except that its interpreted.

O®. Windley: Syntactic sugar makes the syntax of
a language pretty. XML is syntactic arsenic.
@@ Wadler: XML is just a notation for trees, a
verbose variant of LISP S-expressions.
G
WRIGHT STATE
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DTD Example

1y

<?xml version="1.0"?>
<IDOCTYPE BOOK [
<IELEMENT p (#PCDATA)>
<IELEMENT BOOK
(OPENER,INTRODUCTION? (SECTION | PART)+)>

<IELEMENT OPENER (TITLE-TEXT)

<IELEMENT TITLE_TEXT (#PCDATA)>

<IELEMENT INTRODUCTION (HEADER, p+)+>

<IELEMENT PART (HEADER, CHAPTER+)>

<IELEMENT SECTION (HEADER, p+)>

<IELEMENT HEADER (#PCDATA)>

<ELEMENT CHAPTER (CHAPTER_NUMBER, CHAPTER_TEXT)>
<ELEMENT CHAPTER_NUMBER (#PCDATA)>

<IELEMENT CHAPTER_TEXT (p)+>

4
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<BOOK>
<OPENER>
<TITLE_TEXT>All About Me</TITLE_TEXT>
</OPENER>
<PART>
<HEADER>Welcome To My Book</HEADER>
<CHAPTER>
«CHAPTER_NUMBER>CHAPTER 1</CHAPTER_NUMBER>
<CHAPTER_TEXT>
«p>Glad you want to hear about me.</p>
<p>There's so much to sayl</p>
<p>Where should we start?</p>
<p>How about more about me?</p>
<«/CHAPTER_TEXT>

</CHAPTER>
<«/PART>
</BOOK>
WRIGHT STATE
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#Semantics

s Machine processable tags embedded into
human sensible documents (Semantic Web)

+ Interoperability issues due to lack of consensus
on the semantics of XML-tags
» Different concepts, same tags -> Context-sensitivity.
= Same concept, dissimilar tags -> Equivalence issue.
+ Transformations using recursive tree traversals

+ Content extractors/semantic taggers based on
compiler-frontend tools

WRIGHT STATE

Pracad



| @ Reasoning

s Declarative specification and Querying
+ Logic and functional languages; Ontologies

+ Source to source transformations in Search
Engines, Semantic Taggers, etc

= Defining Interface and Behaviors

+ Separation of concerns
» E.g., Web services context

= Reliability and Security
* Type systems

T 1 i

i =

t
WRIGHT STATE

Pracad &




Other Issues

J #Portability across Platforms

s Standardization through specification
* E.g., Language reference manuals

#®Robust Architecture

= Smooth assimilation of changes, over time
+ E.g., Object-Oriented Paradigm

#Rapid Prototyping

= Improving programmer productivity
+ E.g., Scripting languages

IR
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Educational Gaps w.r.t. PL and IT

In spite of good resources, students

#use technical jargon (and acronyms)
without understanding them.

#®describe a concept in abstract terms but
cannot recognize or apply it concretely.

#use hackneyed examples when
requested to provide illustrations.

WRIGHT STATE
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Retrospective on Causes

@ Examples are from correlated sources

# Different languages embody the same
concepts using different syntax, and similar
looking syntax in different languages can
have subtly different semantics.

=« E.g., Java and C++ syntax

# Inadequate mathematical training and
maturity

R
WRIGHT STATE
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= Phil Windley summarizes the related IT
education problem thus:

» Most of the computing literature on XML, SOAP,
and Web Services fails to relate these
technologies back to CS theory and PL that any
computer scientist should know.

+ The writings on these technologies is full of
hype, making them seem more complicated
than they are.

» Most programmers are not familiar with RPC or
messaging to any great extent and so their
generalizations are even more obtuse.

T 1 i

i =

t
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A Proposal for Effective Teaching of
Language Features and Techniques

7

# Develop an example-rich supplement that
gets across language fundamentals and a
comparative study of modern languages

= E.g., Focus on similarities, differences, subtleties,
and trade-offs among related features

s E.g., Illustrate IT issues lucidly in a simpler setting

# Provide progressively difficult but well-
integrated exercises, to apply and gauge, the
grasp and appreciation of the material

WRIGHT STATE
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Supplementary Topics and Materials for
Comparative Languages

7

#Programming Styles

= Imperative style

¢+ L-values vs R-values
s E.g., assignment vs |-value yielding function

s Imperative vs Functional

+ Iteration vs Recursion
m £.9.,, I < R :: expressive power argument
s E.g., I /\ R :: tail-recursion and space-time trade-off

[T

S

t
WRIGHT STATE
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TAIL RECURSION:

int fibtr(int n, int prevl, int prev2) {
it (n==0) return prevl;
else if (n==1) return preve;

else return fibtr(n-1, prev2, prevl + prev2);

WRIGHT STATE
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Exercises :
Specification and Implementation

= E.g., Parsing arithmetic expressions, type
checking/inference, and generating bytecodes
=« E.Q.,
+ HW: Calculator for constant arithmetic expressions

+ PL: Augmenting expressions with variables,
programmable calculator, etc

! Eg .
+ Spec. Algebraic specification of Polynomials
+ HW: Implementing polynomials

+ PL: Augmenting polynomial calculator with memory,
programmable polynomial calculator, etc

Pracad IMxIMTUrnocrTy 156
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@ Procedural vs OOP Architecture

= Continuity : evolution under updates

» In OOP Style, smooth assimilation of new
implementation of an abstract behavior (E.g., data
format changes)

+ In Procedural Style, smooth assimilation of new
functionality
= Interfaces : Client-Server View

* In Procedural Style, a client is responsible for invoking
appropriate server action.

* In OOP Style, a server is responsible for conforming to
the standard interface, assumed by the client.

Pracad 17



(define (size C)
(cond ((vector? C) (vector-length C))
((pair? C)  (length C))
((string? C) (string-length C))
(else =)

(size ‘(one " " two' ' 3))

WRIGHT STATE
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interface iCollects { int size(); }

y

class cVector extends Vector implements iCollects {}
class cString extends String implements iCollects {
public int size() { return length(); }
}
class cArray implements iCollects {
iInt[] array;
public int size() { return array.length; }

}

iCollects ¢ = new cVector(); c.size();

A
WRIGHT STATE 5
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s Declarative vs Procedural

+ “Interpreter supplies control strategy for using
the same declarative specification to answer

different queries”

append([], L, L).
append([H | TLL,[H|R]):-
append(T, L, R).

m "." and “:-" are logical connectives that stand for
“and' and “/f" respectively.

s "[]"and "|" stand for empty list and cons operation.

WRIGHT STATE
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+ Concatenation
m Sig: list x list -> list
= append([1], [2,3], R).

Pracad

+ Verification
= Sig: list x list x list

= append([1], [2,3], [1,2,3]).

+ Constraint solving
= Sig: list x list -> list

« append( R, [2,3], [1,2,3]).

m Sig: list -> list x list
= append(A, B, [1,2,3]).
* Generation

m Sig: -> list x list x list
= append(X, Y, Z).

A
WRIGHT STATE
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Exercises

= Paradigm Comparison

+ Develop attribute grammar for static semantics
of expressions

+ Modify to obtain an executable specification in
a logic language (e.g., Prolog Definite Clause
Grammars)

+ Convert into an object-oriented language (e.q.,
Java), a functional (e.g., Scheme) and an
imperative language (e.g., C).

+ Explore relationship between magic sets in
databases and attribute grammars

T 1 i

i =

t
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4 Programming Language Design
« Portability ("Importance of Language Definition”)

#include <stdio.h>

main() {
int i =b;
printf("\t i = %d, i/++i = %d, i = %d\n\n",
i, i/, i)
}
/* Compilers: cc, gcc
SUNS3 : =6, i/++i=1,i=D
SPARCZ0. i=6, i/++i =1,i=6
ALPHA . =D /a2l is6
MIPS . LB gfes =1 jish
INTUITION. VT TR T RIS IR AT TR
WRIGHT STATE
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#Object-Oriented Languages

1y

y

+ Class
s Static description; unit of modularity; type
* Object
= Runtime structure
+ Inheritance and Polymorphism
s Code reuse
* Polymorphism and Dynamic Binding

s Representation independence; Information hiding
s Interaction with type system

+» Inheritance vs Delegation

WRIGHT STATE
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class P {
public void f(P p)

&——{-System.out.printIin("f(P) in P. "); }
}

class C extends P {
public void f(P p)
{ System.out.printin("f(P) in C."); }
public void f(C cp)
{ System.out.printIn("f(C) in C."); }
}

WRIGHT STATE
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class DynamicBinding {
public static void main(String[] args) {

l‘h_’_'.l'

Ppx =newP(). Ccx = new C()

Ppy =cx;

px.f(px): //f(P) in P.

px.f(cx); LR in P
py.f(px): //f(P) in C.

py.f(cx): //f(P) in C.

cx.f(px): //f(P)in C.

cx.f(cx); //f(C) inC.

WRIGHT STATE



Conclusion

# Discussed an example-rich approach
to comparative languages

#®Based on our experience, this approach
s effective

#\We believe that IT educators can
venefit both from content and
nedagogy proposed here.

IR
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