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THE DUAL SPECTRAL SET CONJECTURE 

STEEN PEDERSEN 

(Communicated by David R. Larson) 

ABSTRACT. Suppose that A = (aZ + b) U (cZ + d) where a, b, c, d are real 
numbers such that a = 0 and c = 0. The union is not assumed to be disjoint. 
It is shown that the translates Q + A, E A, tile the real line for some bounded 
measurable set Q if and only if the exponentials ex (x) = ei2-7xx, AX E A, 

form 
an orthogonal basis for some bounded measurable set W'. 

1. INTRODUCTION 

The relationship between tilings of Rd by translations of a single tile and spectral 
properties of the tile dates back to an old conjecture of Bent Fuglede. So far, there 
are few sharp results. Here we present a setting in R where the tiling property is 
equivalent to the spectral property suggested by Fuglede. 

Definition 1.1. A domain is a bounded Lebesgue measurable set F C R with 
Lebesgue measure 0 < IQ[ < 00. 

A pair (t, A) consisting of a domain Q and a set A C R is called a spectral pair 
if the exponentials FA = {ex : / E A} form an orthogonal basis for L2(Q), where 
eA (x) = e(Xz) = e2"ix. A domain Q is a spectral set if (Q, A) is a spectral pair for 
some set A, and a set A is a spectrum if (Q, A) is a spectral pair for some domain 
Q. A pair (Q, A) consisting of a domain Q and a set A C R is called a tiling pair if 

U•ECA(Q 
+ A) is a measure-theoretic partition of R, i.e., if EXEA XQ+x(x) 

= 
1 for 

a.e. x E R. Here Q + A = {z + A : x E c } and XT(X) is the characteristic function 
of the set T. A domain Q is a tile if (Q, A) is a tiling pair for some A, and a set A 
is a tiling set if (Q, A) is a tiling pair for some domain Q. 

Conjecture 1.2 (The spectral set conjecture [Fug74]). A domain is a spectral set 
if and only if it is a tile. 

Conjecture 1.3 (The dual spectral set conjecture [JP99]). A subset of R is a 
spectrum if and only if it is a tiling set. 

It follows from results in [JP99] that suitable generalizations of these conjectures, 
where both Ft and A are replaced by positive measures, are equivalent. 
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The spectral set conjecture has been studied in numerous recent papers, for 

example, [IKT01], [JP99], [Kol00], [Lab01], [LS01], [LW97], [Ped96], [PW01] and 
the references therein. 

Both the tiling pair and the spectral pair condition can be viewed as a tiling 
condition on a certain function associated with Q. A pair (Q, A) is a tiling pair iff 

(1.1) X(x - I) = 1, a.e. x 
E R, 

AEA 

whereas (Q, A) is a spectral pair iff 

(1.2) ]•-X( x- A)]2 
= 
I_12, a.e. x 

E Rx 
AEA 

Here ' is the Fourier transform 

-Q e? (- x) dx 
of the characteristic function X) of the domain t. 

Incidentally, this shows that tiling questions are "easier" than the corresponding 
spectral questions, since the tiling questions involve tiling by translates of a {0, 1}- 
valued function while spectral questions involve tilings by translates of a continuous 
function whose values include 0 and IX-'(0)|l2 2= 2. 

It is known [Fug74] that the only spectra for an interval of length i are the 
translates of the lattice Z. The union of two translated lattices is a set of the 
form 

A (a + bZ) U (c + dZ), 
where a, b, c, d are real numbers, b 

- 
0 and d 5 0. Here aZ + b = 

{an + b : n E Z}. 

Theorem 1.4. Let A C R be the union of two translated lattices. Then (Q, A) is 
the spectral pair for some domain Q if and only if (Q', A) is a tiling pair for some 
domain Q. 

I will prove this result below, thereby establishing the dual spectral set conjecture 
for sets that are the union of two translated lattices. It is not assumed that the 
union of the two translated lattices is disjoint. 

Assuming that the spectrum is the union of two translated lattices does not 

imply that a corresponding spectral set must be a union of two intervals. More 

explicitly, there are sets with spectrum A = 2Z U (2Z + -) that are not the union 

of two intervals; for example, Q = (0, -) U 
(1, ) U (3 , ) is a simple example of 

such a set. Similarly, one can construct spectral sets with infinitely many connected 

components and spectrum 2Z U (2Z + 1). 
The following simple lemma is well known. 

Lemma 1.5 (Affine invariance). Let A C R, let Q be a domain, and let a, b, c E R. 
Suppose a = 0. 

(1) (Q, A) is a tiling pair if and only if (at + b, aA + c) is a tiling pair. 
(2) (1, A) is a spectral pair if and only if (an + b, -A + c) is a spectral pair. 

By affine invariance of the problem under consideration it is sufficient to consider 
the case where one of the lattices is of a convenient form. Below we will assume 
A - Z U (aZ + b) for some a, b E R with 0 < b < a 1. 

In Sections 2 and 3 we establish Theorem 1.4. 
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2. ANY SPECTRUM IS A TILING SET 

Suppose A is a spectrum. We will show that A is a tiling set by constructing a 
tile Q' such that (Q', A) is a tiling pair. Let Q be a domain such that (Q, A) is a 
spectral pair. 

2.1. The nonzero constant a is rational. 

Proof. The inner product between two exponentials ex and ex, is 

(e-xI l.I Q (A - A/). 
It follows that the two exponentials eA and ex, are orthogonal exactly when 

XQ(A - A') = 0. In particular, if the exponentials EA are orthogonal, then the 
set of non-zero differences (A - A) \ {0} is a subset of the set of zeros of the function 
XQ. The function X : R --+ C is continuous, and '(0) -_= |5 0. Hence there 
exists E > 0 so that 2-(() = 0 for any |1 < e. 

Suppose a is irrational. Let A' = {k + al - b : k, I E Z}. Since a is irrational, the 
set {k + al : k, l E Z} is dense in R; hence there is a point x in A' with 0 < 

Ixl 
< E. 

Since A' C A - A and x = 0, it follows from orthogonality that Q(x) = 0. On the 
other hand, it follows from jxj < e that '(x) 

= 
0. This contradiction shows that 

a is rational. O 

It is a consequence of this proof that A is uniformly discrete in the sense that if 
A = A' are in A, then IA - 

A', 
> e. 

Up to a change of scale this allows us to assume that any spectrum is of the form 
A = Z + B for some finite set B. However, we need more precise information. 

Since a E Q, we have a = 
p 

for some positive integers p, q with greatest common 
divisor gcd(p, q) = 1. It follows that pA = pZ U (qZ + r), where r = pb E R and 
0 < r < q. 

2.2. Suppose r E Z. Since gcd(p, q) = 1, it follows that pA - pA D {pm + qn + r : 

m, nE Z}= Z. Therefore the exponentials ez are orthogonal in L2 
.(•) 

Now 

EpA C Ez and EpA is a maximal orthogonal subset of L2 I) ; it follows that 

EpA 
= 

•z. Consequently, pA - Z. Since ([0, 1), Z) is a tiling pair, we may use , = [0, p). 
Remark 2.1. In light of what follows it is perhaps interesting to note that the only 
ways pZ U (r + qZ) can equal Z for integers p E N, q E N and r E No are (i) 
p = q - 1 and (ii) p = q = 2 and r is odd. The second possibility is ruled out by 
gcd(p, q) = 1. 

2.3. Suppose r ' Z. Since pZ is a subset of pA, the exponentials pz are orthogo- 
nal. It follows from Theorem 6.2 in [JP92] that p' := p 

p 
is an integer Similarly, 

the exponentials EqZ are orthogonal, and therefore q' = q is an integer. 
I 

P 

Now = = q. 
In particular, p'q = 

pq•. 
Since gcd(p, q) =1, it follows 

that p divides p' and q divides q'. Thus IQR is an integer. IP I 
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If (Q, A) is a spectral pair, then it follows from (1.2) and Lemma 2.3(ii) in [KL96] 
that the asymptotic density 

#(A n [-R, R]) 
(2.1) dens(A) = lim -R R-+0o 2R 

exists and equals I I. 
Clearly, dens(pZ) and dens(qZ + r) = Using disjointness of pZ and 

qZ + r, we get dens(pZ U (qZ + r)) = dens(pZ) + dens(qZ + r). Thus 

1 -. 
1 1 pn - +•" 

Since p, q, I all are positive integers, it follows that either (i): p 
= q 2, 

p 
1, and r ? 2Z, or (ii): p= q = 1 and 2 if r Z and 1 

if r E Z. Since gcd(p, q) = 1, case (i) does not occur. We are left to consider 
pA = Z U (Z + r) with 0 < r < 1, but this allows us to use [JP87]. In fact, 
the proof of Theorem 5.1 in [JP87] shows that there exists an integer n such that 

l0 
< -n (n + 

l1 
) < 1 01. Also, if n is any such integer, then ei2nr -1. It 

follows that 
m 

2n 2n 

for some odd integer m. Hence 

(2.2) pA = Z U (Z + E), 

where n 
= 

0 is an integer and m is an odd integer. But the set in (2.2) is a tiling 
set for 

1 Q =[01 ) + {0,1, . ..n-1}. lp ': on..n 
Remark 2.2. In connection with the form of (2.2), note that A = Z U (Z + 1) is 
not a tiling set for any tile. This is easily verified directly. 

3. ANY TILING SET IS A SPECTRUM 

Suppose A = Z U (aZ + b) is a tiling set. We will construct a domain Q' such 
that (Q', A) is a spectral pair. Let Q be a domain such that (Q, A) is a tiling pair. 
We may assume that 0 < b < a < 1. 

It follows from Theorem 1.1 in [KL96] that a is a rational number. Hence, we 
may write a = 

p,Q 
where p, q E N and gcd(p, q) = 1. Multiplying by p, we have 

that pA = pZ U (qZ + r) is a tiling set for pQ; here r = pb as above. Note that 

O<r<q<p. 
It follows from (1.1) and Lemma 2.3 in [KL96] that 

(3.1) |I 
__| 

1 dens(A) 

for every tiling pair (Q, A). This replaces (2.1) in the proof of the converse. 

2098 STEEN PEDERSEN 

If (Q, A) is a spectral pair, then it follows from (1.2) and Lemma 2.3(ii) in [KL96] 
that the asymptotic density 

#(A1 n [-R, R]) (2.1) dens(A)= -lim # -RR 
R--+oo 2R 

exists and equals IQ2 
Clearly, dens(pZ) = and dens(qZ + r) = Using disjointness of pZ and 

p q 
qZ + r, we get dens(pZ U (qZ + r)) = dens(pZ) + dens(qZ + r). Thus 

1.1 = 1 

pn + 

Since p, q, IQ all are positive integers, it follows that either (i): p = q = 2, 

I 1, andr r 2Z, or (ii): p=q= land 
1 2 ifr Z and Q=1 

if r E Z. Since gcd(p, q) = 1, case (i) does not occur. We are left to consider 
pA = Z U (Z + r) with 0 < r < 1, but this allows us to use [JP87]. In fact, 
the proof of Theorem 5.1 in [JP87] shows that there exists an integer n such that 

0 <-IQ n (m + .1 Q) < 1 .1. Also, if n is any such integer, then e i2nr =-1. It 

follows that 
m 
2nt 

for some odd integer m. Hence 

(2.2) pA = Z U (Z + E), 

where n i :0 is an integer and m is an odd integer. But the set in (2.2) is a tiling 
set for 

P1 
Q/=[01 -L) + Ito, il?? 1. 

Remark 2.2. In connection with the form of (2.2), note that A = Z U (Z + 1) is 
not a tiling set for any tile. This is easily verified directly. 

3. ANY TILING SET IS A SPECTRUM 

Suppose A = Z U (aZ + b) is a tiling set. We will construct a domain Q' such 
that (Q', A) is a spectral pair. Let Q be a domain such that (Q, A) is a tiling pair. 
We may assume that 0 < b < a K 1. 

It follows from Theorem 1.1 in [KL96] that a is a rational number. Hence, we 
may write a - 2, where p, q c N and gcd(p, q) = 1. Multiplying by p, we have 
that pA = pZ U (qZ + r) is a tiling set for pQ; here r = pb as above. Note that 
0 K r < q <p. 

It follows from (1.1) and Lemma 2.3 in [KL96] that 

(3.1) I 1 
dens(A) 

for every tiling pair (Q, A). This replaces (2.1) in the proof of the converse. 



SPECTRA AND TILING SETS 2099 

3.1. Suppose r E Z. By the tiling assumption, I(pQ + pm) n (pQ + qn + r) = 0 for 
all integers m, n for which pm = r + qn. Subtracting pm, we have Jpt n (pQ + qn + 
r - pm)| = 0 for all integers m, n for which r + qn - pm = 

O. Since gcd(p, q) = 1, 
we conclude that [pQ n (pQ + k) = 0 for all integers k :/ 0. It follows that 

(3.2) (p ZI)< 
1. 

Now 

dens(pZ U (qZ + r)) < dens(pZ) + dens(qZ + r) = + 

It follows from (3.2) and (3.1) that 

IpQI _ 1 > pq 
dens(pA) p+q 

The only positive integers p, q solving pq < p+q are (i) p = q = 1, (ii) p = 2, q = 1, 
(iii) p = 1, q = 2, and (iv) p = q - 2. In our situation q < p and gcd(p, q) = 1. So 
only (i) and (ii) are operative. In case (i), A = Z. In case (ii), O < r < q and r E Z 
imply r = 0. Again we have A = Z. Hence, in both cases, (Q', A) is a spectral pair 
if Q' = [0, 1). 
3.2. Suppose r g Z. We begin by showing that p- q= 1. 

Proof that p = q = 1. Using arguments similar to those we used in Subsection 3.1, 
we have 

(3.3) ](pt + m + r) n (pQ + n) = 0 
for all integers m, n, and we have the equality 

(3.4) pa2 pq AIp+q 

since pZ n (qZ + r) = 0 implies dens(pZ U (qZ + r)) = dens(pZ) + dens(qZ + r). It 
follows from (3.3) that 

](pQ + Z) n (pQ + Z + r)l= 0 
But p +pZ C pQ+Z, pQ+qZ+r C pQ+Z+r, and (pt+pZ) U (p +qZ+r) = R, 
up to a set of measure zero. It follows that pQ + Z = pQ + pZ and pt + Z + r = 

pQ + qZ + r, both up to sets of measure zero. Since pQ + Z = (pQ + Z + r) - r, we 
have 

pQ + pZ = pQ + qZ 
up to sets of measure zero. It follows that pZ U (pZ + r) and qZ U (qZ + r) both are 
tiling sets corresponding to the tile p2. Using arguments similar to the one leading 
to (3.4) on each of these tiling sets, we have 

Ip•2 
= 2 and IpCl - , hence p = q. 

Using gcd(p, q) = 1, we conclude that p = q = 1. O 

Hence we have shown that A = Z U (Z + r) for some 0 < r < 1. Now we want 
to show that r is rational. 

Proof that r is rational. This proof borrows from the proof of Theorem 2 in [LW96]. 
Suppose r V Q. By (3.4) we have 

(3.5) IR( 
=1 

Let U = QU (Q + r); then (U, Z) is a tiling pair and 

"()= 
e(t) dt + 

? e(t() 
dt 

(+e JO+r = (1 + e( ) ( 
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3.1. Suppose r c Z. By the tiling assumption, I (pQ + pm) n (pQ + qn +r) = for 
all integers m, n for which pm = r + qr. Subtracting pm, we have JpQ n (pQ + qi + 
r - pm) I = 0 for all integers m, n for which r + qr - pm = 0. Since gcd(p, q) - 1, 
we conclude that IpQ n (pQ ? k) I 0 for all integers k : 0. It follows that 

(3.2) JPQ I < 1. 

Now 

dens(pZ U (qZ + r)) < dens(pZ) + dens(qZ + r) = + 
It follows from (3.2) and (3.1) that 

IPI___I_ > pq 
dens(pA) - p+q 

The only positive integers p, q solving pq < p+q are (i) p = q =1, (ii) p = 2, q =1, 
(iii) p = 1, q = 2, and (iv) p q =-2. In our situation q < p and gcd(p, q) = 1. So 
only (i) and (ii) are operative. In case (i), A = Z. In case (ii), 0 < r < q and r E Z 
imply r = 0. Again we have A = Z. Hence, in both cases, (Q', A) is a spectral pair 
if Q, = [0, 1). 
3.2. Suppose r Z. We begin by showing that p - q =1. 

Proof that p = q 1. Using arguments similar to those we used in Subsection 3.1, 
we have 

(3.3) j(pQ + m + r) n (pQ + n) I=O 

for all integers m, n, and we have the equality 

(3.4) jpQ p+q 

since pZ n (qZ + r) = 0 implies dens(pZ U (qZ + r)) = dens(pZ) ? dens(qZ + r). It 
follows from (3.3) that 

J(pQ + Z) n (pQ + z + r) = 
But pQ pZ C pQ?Z, pfQ?qZ r C pQ?Z r, and (pQ?pZ) U (pQ qZ r) -R 
up to a set of measure zero. It follows that pQ + Z = pQ + pZ and pQ + Z ? r = 
pQ + qZ + r, both up to sets of measure zero. Since pQ + Z = (pQ + Z ? r) - r, we 
have 

pQ + pZ = pQ + qZ 
up to sets of measure zero. It follows that pZ U (pZ + r) and qZ U (qZ ? r) both are 
tiling sets corresponding to the tile pQ. Using arguments similar to the one leading 
to (3.4) on each of these tiling sets, we have jpQj = 2 and IpSI - 

q hence p = q. 
Using gcd(p, q) = 1, we conclude that p = q =-1. E 

Hence we have shown that A = Z U (Z + r) for some 0 < r < 1. Now we want 
to show that r is rational. 

Proof that r is rational. This proof borrows from the proof of Theorem 2 in [LW96]. 
Suppose r V Q. By (3.4) we have 

(3-5) R 2 

Let U = Q U (Q + r); then (U, Z) is a tiling pair and 

S= j1 + e(t)d jet) dt 

=(1 ? e,(r?))XjQ~) 
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If n E Z is a nonzero integer, then 1 + e(rn) : 0, since r V Q. Furthermore, 

O = U(n) = (1 + e(rn)) '(n). 

It follows that '(n) = 0. Hence the exponentials Ez form an orthogonal system in 
L2 (). It follows from Theorem 6.2 in [JP92] that IQ is an integer. This contradicts 

(3.5). Hence r is rational. O 

Completion of the proof of Theorem 1.4. Hence Q is a tile with tiling set 

(3.6) A = z u (Z + ) = Z + {0, }, 
where 0 < s < t are integers and gcd(s, t) = 1. Let al = 0 and a2 = s. By Theorem 
3 in [LW96], equation (3.6) implies that there exist an integer K > 1 and integers 

(bk)K=l 
such that 0 < bk < t, and such that every integer 0 < j < t can be written 

(modulo t) uniquely as j = 
an + bk with 1 < n < 2 and 1 < k < K. It follows 

that t = 2K; in particular, t is an even integer. Since gcd(s, t) = 1, we conclude 
that s is an odd integer. Thus A = Z U (Z + 2n-1) for some integers K 5 0 and 
n. Let /' = [0, 1) U [K, K + 1). By [JP87] (the result is a special case of Theorem 
2.1 in [JP94]) it follows that (Q', A) is a spectral pair. The important fact is that 
e (K-) = -1. O 

4. MUST THE DOMAINS BE BOUNDED? 

In [Fug74] Fuglede stated the Spectral Set Conjecture for Lebesgue measurable 
sets Q with 0 < I|l < 0c. In particular, he did not assume that Q is bounded. 

Thus we wish to replace Definition 1.1 by 

Definition 4.1. A weak domain is a Lebesgue measurable set Q C R with Lebesgue 
measure 0 < IQ I < 0c. 

Examining the proof of Theorem 1.4 above, we see that we can replace "domain" 
by "weak domain" almost everywhere. The only thing that does not work is the 

appeal to Theorem 1.1 in [KL96] at the beginning of Section 3. If we only consider 
A = Z U (aZ + b) with Z n (aZ + b) = -0, then we can use the argument from 
Subsection 3.2 (without knowing that a is rational) to show that a = 1. Thus we 
have the following version of Theorem 1.4. 

Theorem 4.2. Let A = Z U (aZ + b) be such that Z n (aZ + b) = -. Then (Q, A) is 
the spectral pair for some weak domain Q if and only if (Q', A) is a tiling pair for 
some weak domain 1'. 

Thus, using our approach to this particular version of the Dual Spectral Set 
Conjecture, we are able to trade boundedness of Q for disjointness of the lattices 
in A. 

The definitions of spectral pair and of tiling pair make sense in Rd. In this paper 
we only considered the case d = 1. It is natural to wonder if one could prove an 

analogue of Theorem 1.4 in Rd with d > 2. 
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3 in [LW96], equation (3.6) implies that there exist an integer K > 1 and integers 
(bk)K1 such that 0 < bk <t, and such that every integer 0 < j < t can be written 
(modulo t) uniquely as j =a, + bk with 1< n < 2 and 1< k < K. It follows 
that t = 2K; in particular, t is an even integer. Since gcd(s, t) = 1, we conclude 
that s is an odd integer. Thus A = Z u (Z + 2n-~1) for some integers K 5 0 and 
n. Let Q'/= [0,11) U [K, K + 1). By [JP87] (the result is a special case of Theorem 
2.1 in [JP94]) it follows that (Q', A) is a spectral pair. The important fact is that 
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In [Fug74j Fuglede stated the Spectral Set Conjecture for Lebesgue measurable 
sets Q with 0 < IQ I < oc. In particular, he did not assume that Q is bounded. 

Thus we wish to replace Definition 1.1 by 

Definition 4.1. A weak domain is a Lebesgue measurable set Q C R with Lebesgue 
measure 0 < IQ I < o0. 

Examining the proof of Theorem 1.4 above, we see that we can replace "domain" 
by "weak domain" almost everywhere. The only thing that does not work is the 
appeal to Theorem 1.1 in [KL96] at the beginning of Section 3. If we only consider 
A= Z U (aZ ? b) with Z n (aZ + b) - 0, then we can use the argument from 
Subsection 3.2 (without knowing that a is rational) to show that a = 1. Thus we 
have the following version of Theorem 1.4. 

Theorem 4.2. Let A = Z U (aZ + b) be such that Z 0 (aZ + b) = 0. Then (Q, A) is 
the spectral pair for some weak domain Q if and only if (Q', A) is a tiling pair for 
some weak domain Q1. 

Thus, using our approach to this particular version of the Dual Spectral Set 
Conjecture, we are able to trade boundedness of Q for disjointness of the lattices 
in A. 

The definitions of spectral pair and of tiling pair make sense in Rd. In this paper 
we only considered the case d = 1. It is natural to wonder if one could prove an 
analogue of Theorem 1.4 in Rd with d > 2. 
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